首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
炭黑-白炭黑双相纳米填料及其增强SSBR性能   总被引:6,自引:3,他引:6  
研究了2种自制炭墨-白炭墨双相纳米填料(CSDPF)的结构及其填充[矣醒苯橡胶(SSBR)胶料的性能,并与炭黑为黑/白炭黑共混填充胶料的性能做对比。结果表明,CSDPF属两相结构,其增强SSBR的物理机械性能与炭黑及炭黑/白炭黑共混填充胶料相当,但加工性能好,Payne效应小,压缩生热低,动态性能优异。  相似文献   

2.
用黏土/天然橡胶纳米复合材料代替部分进口天然橡胶和炭黑制备抗崩花掉块和耐破坏的高性能的矿山轮胎胎面胶。结果表明,纳米黏土基本不影响胶料的硫化性能;纳米黏土构建网络结构的能力较强,Payne效应明显,黏土复合体系的混炼胶具有较好的挺性,硫化胶具有较高的硬度和定伸应力;纳米黏土片层能够沿外力方向取向并诱导高分子链取向,黏土复合体系的断裂伸长率较高,拉伸强度和撕裂强度较大,生热较高,同时纳米黏土的片层结构能够钝化支化裂纹尖端,复合体系的耐切割和耐屈挠裂纹增长性能优异。成品轮胎的路试结果表明,黏土/天然橡胶纳米复合材料完全可以代替进口天然橡胶用于矿山专用全钢载重子午线轮胎胎面胶配方中。  相似文献   

3.
针对现有的乳液插层法所制备的橡胶/黏土纳米复合材料中填料与橡胶之间界面结合较弱的缺点,在乳液插层法中对无机黏土进行有机改性,制备出力学性能优异的纳米复合材料。X射线衍射和透射电子显微镜技术分析表明,有机改性后的复合材料中黏土被部分地有机改性,且在基体中以纳米尺寸分散。  相似文献   

4.
SBR粘土纳米复合材料流变性能的研究   总被引:3,自引:1,他引:2       下载免费PDF全文
用透射电子显微镜和孟山都流变仪研究了SBR粘土纳米复合材料和SBR炭黑混炼胶的微观结构、流变性能和挤出膨胀性能。结果表明:粘土和炭黑在SBR中均达到纳米级分散,但粘土为片层结构而炭黑为近似球形粒子,两种胶料的流变性能有所下降;在填充剂用量相同的条件下,SBR粘土胶料的粘度比SBR炭黑胶料大;在相同的挤出速率下,SBR粘土胶料具有比SBR炭黑胶料更好的挤出物外观和较小的挤出膨胀比,可以在较高的速率下挤出。  相似文献   

5.
SBR粘土纳米复合材料的气密性   总被引:5,自引:6,他引:5       下载免费PDF全文
对乳液法制备的SBR粘土纳米复合材料的气密性进行了研究,结果表明:SBR粘土纳米复合材料的气密性优于传统填料填充的硫化胶,且随温度的变化较小;填料的用量、形状以及与橡胶的结合性是影响气密性的主要因素;填充20份粘土的纳米复合材料气密性优于NR/SBR内胎,比IIR内胎差。  相似文献   

6.
橡胶纳米复合材料研究进展   总被引:18,自引:3,他引:15  
综述了国内外炭黑/橡胶、白炭黑/橡胶和黏土/橡胶三大类橡胶纳米复合材料的研究进展,对材料的性能特点和制备技术的优缺点进行了总结。  相似文献   

7.
《化工矿物与加工》2007,36(9):40-40
北京化工大学发明的具有我国自主知识产权的千吨级黏土/橡胶纳米复合材料率先实现工业生产。其产品中的纳米分散黏土可以部分或全部替代炭黑,从而可减轻橡胶加工行业对石油和天然气资源的依赖程度,并能提高橡胶制品的气密性和耐疲劳性,延长制品的使用寿命。专家认为,该技术具有原创性,达到国际领先水平。  相似文献   

8.
采用ARES流变仪和毛细管流变仪,对线形聚丙烯(LPP)、长链支化聚丙烯(LCBPP)、LPP/LCBPP共混体系分别与纳米黏土的复合发泡体系的动态剪切和稳态剪切流变性能进行了研究。考察了复合体系制备过程中螺杆转速、相容剂含量对复合体系熔体弹性的影响,研究了不同温度下复合体系的剪切黏度、剪切应力与剪切速率之间的关系。结果表明:将纳米黏土引入PP发泡体系中可有效改进PP树脂的可发性。复合体系制备过程中,螺杆转速并未对LPP、LCBPP与纳米黏土复合体系的熔体弹性产生影响;随相容剂马来酸酐接枝聚丙烯用量的增加,LPP、LCBPP/纳米黏土复合体系的熔体弹性有小幅降低,但幅度并不显著;LCBPP/纳米黏土复合体系的剪切黏度具有较高的温度敏感性,随温度升高,表观剪切黏度下降显著。在低剪切速率区,LCBPP/纳米黏土复合体系的表观剪切黏度低于LPP、(LCBPP/LPP)/纳米黏土复合体系,但在高剪切区,三者的剪切黏度趋于接近。  相似文献   

9.
黏土/天然橡胶纳米复合材料的制备及性能   总被引:13,自引:1,他引:13  
利用乳液插层法制备了黏土/天然橡胶纳米复合材料,研究了该复合材料的力学性能、应力应变行为、耐磨性、气体阻隔性和耐老化性能。结果表明,黏土/天然橡胶纳米复合材料与高耐磨炭黑(N330)、白炭黑增强橡胶相比,邵尔A型硬度、定伸应力和撕裂强度较高,拉伸强度相当。黏土、N330以及白炭黑对天然橡胶的拉伸结晶有影响,填料用量对材料拉伸强度的影响存在最佳值。黏土/天然橡胶纳米复合材料具有良好的耐磨性、气体阻隔性和耐老化性能。  相似文献   

10.
一般来说,工业橡胶制品是用纳米无机填料填充的橡胶一纳米复合材料制备的。同时,这是一类软材料。软纳米复合材料使复合材料的用途正在不断扩大。在原料聚合物中,天然橡胶(NR)是软组分的选用材料。例如,重型充气轮胎(如航空轮胎和重型载重汽车轮胎)和抗振系统用橡胶支座就是由NR、适用的补强填料及交联用交联剂制成的。迄今为止,炭黑是一种橡胶工业广泛应用的补强填料,而白炭黑的应用迅速扩大,尤其是用于制造所谓的“绿色轮胎”。橡胶/粒状白炭黑复合材料在降低滚动阻力和生热方面优于炭黑。用白炭黑填充的NR已成为对环境无污染的“绿色”材料,因为NR是可再生的生物材料,且白炭黑的原材料在地球上贮量丰富,但炭黑从石油中获取,会耗尽。  相似文献   

11.
Styrene butadiene rubber-organoclay nanocomposites were prepared with Cloisite 15A via melt intercalation. X-ray diffraction and transmission electron microscopy indicated that the nanostructures are partially exfoliated and intercalated. The nanocomposites exhibited great improvements in tensile strength and tensile modulus. The incorporation of organoclay gave rise to considerable reduction of tan delta and increase in storage modulus in the rubbery region. It is shown that after 6 phr (parts per hundred rubber) clay loading there is not much increase in the properties. The effect of carbon black (N330) on mechanical properties, dynamic mechanical properties, heat build up, abrasion resistance in the nanocomposites having the optimized clay level (6 phr) was investigated. Optimum results were obtained with the addition of 25 phr carbon black. For comparison with the 6phr nanoclay and 25phr N330 (high abrasion furnace carbon black) filled SBR composites, 40 phr N330 filled SBR composites was used. The 6phr organoclay and 25phr N330 filled SBR nanocomposite showed better properties than 40phr carbon filled SBR compound. These results indicate that 6phr organoclay can be replaced by 15 phr carbon black from the conventional SBR-carbon black based tire tread compounds. The Dynamic mechanical analyzer (DMA) results revealed that the new tire tread compound gives better rolling resistance and comparable wet grip resistance and lower heat build up than that of conventional tread compound.  相似文献   

12.
Hydrogenated nitrile rubber (HNBR)/silica nanocomposites were prepared by in‐situ modification dispersion technology, and the silane coupling agent γ‐methacryloxypropyl trimethoxy silane (KH570) was chosen to promote the interfacial strength between silica particles and HNBR matrix and further improve the dispersion of silica particles. Rubber Process Analyzer (RPA2000) was used to test the Payne effect of HNBR/silica compounds, from which some interesting phenomena were found: the Payne effect became stronger after KH570 was added to HNBR/silica compound at room temperature, which was a contrary result compared to SBR/silica system. However, after stored for a month at room temperature, the Payne effect weakened, which was contrary to the traditional phenomenon of storage hardening of filled rubber. All these results are related to filler–filler interaction and filler–rubber interaction. The modulus at small strain amplitude of HNBR/silica compound with KH570 gradually decreased with the increase of times of circulatory strain sweep but that of compound without KH570 had almost no change, which was explained by Fourier Transform Infrared (FTIR) results that the reaction between silica and KH570 almost completed at the test condition: 80°C and about 1 h. The effects of silane amount, heat‐treated temperature and time on the Payne effect of compounds and the mechanical properties of vulcanizates were also investigated. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

13.
Abstract

Hollow carbon black (HCB) is introduced in this work. It has a special hollow structure, high specific surface area, high structure and high electric conductivity. Hollow carbon black is used to fill styrene–butadiene rubber (SBR). The bound rubber test results show that the bound rubber of SBR/HCB can be measured when the HCB content reaches 25 phr because a strong filler network is formed, which indicates good electric conductivity of SBR/HCB. In comparison, the bound rubber of SBR/N330 can not be measured even when the N330 content is 40 phr. The mechanical measurements show that HCB has very good reinforcing effect on SBR especially when the filler content is low. The electric conductivity and thermal conductivity increase with the increase in filler content. At the same filler content, the properties of SBR/HCB nanocomposites are better than those of SBR/N330 nanocomposites, which suggests that HCB has good application potential.  相似文献   

14.
Extrusion of star styrene-butadiene rubber (SBR) without and with ultrasonic treatment at amplitudes 3.5, 5, 7.5, and 10 μm was carried out. The molecular structure of untreated and treated star SBR was determined. Significant reduction of die pressure was observed during ultrasonic treatment due to the thixotropic and degradation effects. Ultrasonic treatment of star SBR at 3.5 μm created molecules of higher molecular weight via long-chain branching without gel formation. Ultrasonic treatment of star SBR at 5 μm created a small amount of gel. At high ultrasonic amplitudes more gel was generated hindering mixing of star SBR with silica. Extruded star SBR was compounded with carbon black and precipitated silica, with and without silane. It was found that the long-chain branching induced by ultrasonic treatment improved the rubber–filler interaction in precipitated silica without silane, as confirmed by the increase of bound rubber content. The filler–filler interaction was reduced in silica compounds without silane, as indicated by study of Payne effect. The significantly improved rubber–filler interaction and reduced filler–filler interaction led to an increase of the modulus at 100% elongation and tensile strength of SBR/silica vulcanizates. Extensive comparisons were made with earlier study on ultrasonic treatment of linear SBR. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47451.  相似文献   

15.
A novel, effective approach to improve the cutting and chipping resistance (CCR) of carbon black (CB)-filled styrene butadiene rubber (SBR) composite was reported in this study. CCR of SBR was dramatically improved more than 30% by addition of 4 phr nanodispersed clay (NC), while not decreasing the stress at 100% and the Shore A hardness of the composite. The curing characteristics, loss tangent (tan δ), and the strength of filler network of the composites were further measured by a Disk Oscillating Rheometer and a rubber processing analyzer, respectively. It was found that the addition of NC led to a slightly lower crosslink density, higher tan δ, and stronger filler network, which contributed to the higher CCR. Therefore, the novel layered NC is more efficient in improving CCR when compared with CB. The results are expected to promote the application of NC in rubber industry. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

16.
The mechanical performance of natural rubber (NR), synthetic poly-isoprene rubber (IR), and styrene–butadiene rubber (SBR) composites filled with various silica/silane systems is investigated. The results are analyzed by referring to micro-mechanical material parameters, which quantify the morphological and structural properties of the polymer and filler network. These are obtained from fits with the dynamic flocculation model (DFM) describing the strongly nonlinear quasi-static stress–strain response of filler-reinforced elastomers as found from multihysteresis measurements of the investigated compounds. We focus on the reinforcement mechanisms of silica compounds with coupling and covering silane, respectively. The fitted material parameters give hints that the coupling silane provides a strong chemical polymer–filler coupling, which is accompanied by improved strength of filler–filler bonds for all three rubbers types. This may result also from the chemical coupling of short chains bridging adjacent silica particles. It implies larger stress values for the coupling silane and, in the case of NR and IR, a more pronounced “Payne effect” compared to the covering silane. In contrast, for SBR, the coupling silane delivers a lower Payne effect, which is explained by differences in the compatibility between rubber type and silane-grafted silica surface. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48435.  相似文献   

17.
Because silica has strong filler‐filler interactions and adsorbs polar materials, a silica‐filled rubber compound exhibits poor dispersion of the filler and poor cure characteristics in comparison with those of a carbon black‐filled rubber compound. Acrylonitrile‐butadiene rubber (NBR) improves filler dispersion in silica‐filled styrene‐butadiene rubber (SBR) compounds. The influence of the NBR type on the properties of silica‐filled SBR compounds containing NBR was studied with NBRs of various acrylonitrile contents. The composition of the bound rubber was different from that of the compounded rubber. The NBR content of the bound rubber was higher than that of the compounded rubber; this became clearer for NBR with a higher acrylonitrile content. The Mooney scorch time and cure rate became faster as the acrylonitrile content in NBR increased. The modulus increased with an increase in the acrylonitrile content of NBR because the crosslink density increased. The experimental results could be explained by interactions of the nitrile group of NBR with silica. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 385–393, 2002  相似文献   

18.
为拓展硅藻土在高分子复合材料中的应用,将硅藻土/白炭黑填充到天然橡胶/丁苯橡胶/顺丁橡胶中制备了复合材料。通过RPA2000和扫描电镜分析了复合填料的Payne效应和分散性,考察了硅藻土用量对复合材料工艺性能、力学性能、耐磨耗性能影响。结果表明:少量硅藻土的加入有利于白炭黑在橡胶中的分散,能降低复合材料的门尼粘度和Payne效应,提高复合材料的硫化速度,缩短硫化时间,复合填料的补强效果较好;随着硅藻土用量的增加,复合填料容易聚集,其力学性能呈下降趋势,而磨耗性能变化不大;当硅藻土用量10~20份时,复合材料的综合性能最好。  相似文献   

19.
Since silica has strong filler–filler interactions and adsorbs polar materials, a silica‐filled rubber compound has a poor dispersion of the filler and poor cure characteristics. Improvement of the properties of silica‐filled styrene–butadiene rubber (SBR) compounds was studied using acrylonitrile–butadiene rubber (NBR). Viscosities and bound rubber contents of the compounds became lower by adding NBR to the compound. Cure characteristics of the compounds were improved by adding NBR. Physical properties such as modulus, tensile strength, heat buildup, abrasion, and crack resistance were also improved by adding NBR. Both wet traction and rolling resistance of the vulcanizates containing NBR were better than were those of the vulcanizate without NBR. The NBR effects in the silica‐filled SBR compounds were compared with the carbon black‐filled compounds. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 1127–1133, 2001  相似文献   

20.
Because silica has strong filler–filler interactions, a silica‐filled rubber compound shows a poor filler dispersion compared to a carbon black‐filled one. Improvement of the filler dispersion in silica‐filled styrene–butadiene rubber (SBR) compounds was studied using low molecular weight polybutadiene (liquid PBD) with the high content of 1,2‐unit. By adding the liquid PBD to the silica‐filled SBR compound, the filler dispersion and flow property are improved. The cure time and cure rate become faster as the 1,2‐unit content of the liquid PBD increases for the compounds containing the liquid PBD. The crosslink density increases linearly with increase in the 1,2‐unit content of the liquid PBD. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3135–3140, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号