共查询到18条相似文献,搜索用时 78 毫秒
1.
2.
3.
纳米级精密定位工作台研究 总被引:2,自引:0,他引:2
为实现压印设备的精密加工,应尽可能地提高工作台的定位精度.通过合理选材,设计出具有六自由度的工作台,并分析工作台定位精度的影响因素,通过误差分析,得到能够满足纳米级定位精度的工作台结构参数. 相似文献
4.
5.
6.
纳米定位机构及其控制系统的研究 总被引:13,自引:0,他引:13
在纳米科学与技术领域 ,纳米定位技术是纳米测量和原子操作工程研究及走向产业化的前提条件和工作基础。本文设计了一种新颖的以柔性铰链为弹性导轨、压电陶瓷为驱动器的纳米定位机构 ,给出了其动力学模型 ,结合纳米传感器微位移检测装置和微机控制系统设计并研制了数字闭环控制的纳米定位系统。实验表明 :该纳米定位系统行程 10 μm ,定位精度优于± 0 .0 3μm ,定位分辨力 3nm ,最大定位时间 40ms。 相似文献
7.
8.
9.
10.
11.
12.
13.
14.
针对传统机械式的微位移机构无法满足高精度的定位要求,而柔性铰链本身驱动又存在驱动位移小的问题,设计了基于柔性铰链的杠杆放大机构。利用有限元分析软件A N SY S W orkbench12对微位移机构进行静力学和动力学模态分析,通过理论计算和仿真结果对比,微位移机构的尺寸可以满足设计要求。 相似文献
15.
16.
以椭圆的离心角为积分变量,得到椭圆柔性铰链的转角计算的积分公式,推导出椭圆柔性铰链的刚度表达式.在此基础上针对一种应用广泛的含椭圆柔性铰链的柔顺机构,建立其动力学模型,得到该机构系统的固有频率计算公式.通过算例分析了该机构的各种参量对系统固有频率以及柔性铰链刚度的影响. 相似文献
17.
利用快刀伺服系统加工可获得纳米级的微结构,桥式柔性铰链是最关键的零件之一,其柔性铰链的误差度直接影响零件的加工精度。通过对多误差源的分析,探索每个误差源对精度的影响程度。包括过对桥式柔性铰链关键尺寸的加工误差,特别是对敏感度较高的长度、宽度、厚度加工误差的分析,建立起关键尺寸与加工精度的数学模型;分析温度变化,建立基于神经网络的加工误差数学模型,并提出温度补偿的策略;分析重力等原因引起的误差变形,建立由于重力引起变形量与加工精度的数学模型。将上述的多误差源的数学建模运用到设计和制造中,能从源头上减少误差对加工精度的影响程度,提高快刀伺服系统加工微结构零件的尺寸精度和表面粗糙度。 相似文献
18.
为提高双足压电直线作动器的有效驱动,增强作动器中二级杠杆微位移结构和柔性铰链的放大能力,对作动器的结构参数进行优化。首先,对二级杠杆微位移机构的放大倍数进行理论计算,基于ANSYS完成作动器定子作动仿真过程;其次,通过仿真分析发现,在作动器定子中综合使用直圆型柔性铰链和直梁型柔性铰链,会使作动器定子放大倍数得到优化,最优铰链参数对应的放大倍数为8.131;最后,制作了该作动器样机并进行了定子驱动足振幅测试,两驱动足的振动相对稳定。实验结果表明,驱动足I,II的位移振幅在60和63μm的上下范围浮动,与实际相符合。与现有的压电直线作动器相比较,该作动器结构简单,易于安装调试,具有大振幅驱动和运行稳定等特点。 相似文献