共查询到19条相似文献,搜索用时 187 毫秒
1.
双转台五轴机床空间误差补偿技术研究 总被引:1,自引:0,他引:1
几何误差、热误差和切削力误差占到了机床总误差的75%,对这3项误差进行控制是提高机床加工精度的关键所在。以双转台五轴机床的空间误差作为研究对象,通过对加工位置、主要热源及电动机电流等相关因素进行分析,确定空间误差建模所需的位移变量、温度变量和切削力变量。以现有的多种误差建模方法为基础,通过对信息融合技术进行研究,提出一种机床空间误差的多模型融合预测方法,建立综合反映几何误差、热误差和切削力误差的最优空间误差模型。最后以DSP为核心,设计空间误差补偿器,实施空间误差补偿,验证补偿效果。结果显示,建立的模型预测精度较高,残差小于2μm,而实施空间误差补偿后,加工零件的轮廓误差也由15μm降到了5μm,补偿效果明显。 相似文献
2.
针对五轴数控机床旋转轴的运动误差和几何误差的综合评估问题,在不考虑直线轴运动误差影响的情况下,提出了一种采用R-test测量仪的测量及其辨识方法。首先,测量过程按照参考球的两种不同高度设置进行,仅移动旋转轴,而不移动直线轴。其次,利用R-test测量仪对旋转轴的运动精度进行了测量。此外,假设旋转轴位置几何误差和工作台上参考球的设置误差是影响测量结果的因素,并通过最小二乘法对这些因素进行分离。采用IBS公司的R-test测量仪,对米克朗公司UCP800Duro立式五轴加工中心C轴的运动误差和几何误差进行了测量实验。研究结果表明,该方法能够正确识别旋转轴的运动误差和几何误差,可以有效地综合评估旋转轴的运动精度,并有助于进一步提高旋转工作台的精度。 相似文献
3.
为了快速、系统地辨识双五轴数控铣削机床旋转轴几何误差,提出了一种基于R-test的误差测量辨识方法。根据R-test误差模型研究误差测量值与各项误差参数的关系,辨识旋转轴各个几何误差项以得到旋转轴的安装误差和运动误差;利用最小二乘法原理平面圆拟合和直线拟合的方法分别辨识出2项位移误差和2项垂直度误差;基于多体系统理论及齐次坐标变换方法建立刀具坐标系与工件坐标系的齐次坐标变换模型,并辨识出3项移动误差和3项转动误差;最后,根据所得辨识值对X向和Y向位移误差进行补偿。实验结果表明,补偿后X向和Y向位移误差明显减小,误差补偿结果验证了测量、辨识的准确性和有效性。 相似文献
4.
为了方便快捷、准确地测量五轴数控机床旋转轴的安装误差,提出一种基于旋转轴综合误差测量的安装误差辨识方法。该方法借助于五轴数控机床的RTCP功能,测量某点绕旋转轴转动过程中的理论坐标与实际坐标的综合误差数据,通过误差数据的平面圆和直线拟合,实现了安装误差的分离和辨识,包括2项位移误差和2项垂直度误差。试验结果表明,该方法计算准确,可用于机床旋转轴的装配调试精度分析。 相似文献
5.
6.
7.
五轴联动数控机床旋转轴几何误差测量与分离方法 总被引:1,自引:0,他引:1
提出一种基于球杆仪的新颖、快速的五轴联动数控机床旋转轴几何误差测量与分离方法,它选择径向和轴向安装测试路径,采用单旋转袖运动或1个旋转轴和2个直线轴联动方式,进行圆度误差测试,给出了旋转轴几何误差与各测试路径的关联图谱.并深入研究了球杆仪虚拟安装偏心技术.简化了旋转轴误差与球杆仪测试值的数学关联模型,并对影响测试结果的因素进行分析,提出采用球杆仪二次测量方法,对直线轴径向耦合误差进行解耦,实现了旋转轴几何误差的辨识和精确测量. 相似文献
8.
为降低转动轴几何误差对转台-摆头式五轴机床精度的影响,提出了基于球杆仪的位置无关几何误差测量和辨识方法。基于多体系统理论及齐次坐标变换方法建立了转台-摆头式五轴机床位置无关几何误差模型,依据旋转轴不同运动状态下的几何误差影响因素建立基于圆轨迹的四种测量模式,并实现10项位置无关几何误差的辨识。利用所建立的几何误差模型进行数值模拟,确定转动轴的10项位置无关几何误差对测量轨迹的影响。最后,采用误差补偿的形式实验验证所提出的测量及辨识方法的有效性,将位置无关几何误差补偿前后的测量轨迹进行比较。误差补偿后10项位置无关几何误差的平均补偿率为70.4%,最大补偿率达到88.4%,实验结果表明所提出的建模和辨识方法可用于转台-摆头式五轴机床转动轴精度检测,同时可为机床精度评价及几何精度提升提供依据。 相似文献
9.
10.
一种五轴数控机床的综合误差建模与补偿 总被引:1,自引:0,他引:1
研究五轴数控机床的综合误差建模与补偿方法。系统地分析了机床几何误差与热误差,并提出了其新的分类方法和一种直观形象的杆、副误差矩阵描述方法,根据这种误差描述方法建立了五轴数控机床的综合误差模型,最后根据矩阵微分法建立了机床综合误差补偿模型。 相似文献
11.
几何误差是五轴数控机床重要误差源,针对传统测量方法仪器昂贵、测量周期长问题,提出基于球杆仪的五轴数控机床几何误差快速检测方法。对于机床的平动轴误差,利用多体系统理论及齐次坐标变换法,建立平动轴空间误差模型,通过球杆仪在同一平面不同位置进行两次圆轨迹,辨识出4项平动轴关键线性误差;针对五轴机床的转台和摆动轴,设计基于球杆仪的多条空间测试轨迹,完整求解出旋转轴12项几何误差。实验结果显示,所提方法获得转角定位误差与激光干涉仪法最大误差为0.001 8°,利用检测结果进行机床空间误差补偿,测试轨迹偏差由16μm降至4μm,为补偿前的25%,验证了方法的有效性。提出的五轴机床几何误差检测方法方便、便捷,适用于工业现场。 相似文献
12.
13.
本文提出一种新的机床位置误差灵敏度分析方法。首先基于多体理论和齐次变换矩阵建立了五轴龙门机床位置误差模型。其次通过截断傅里叶技术来表征与位置有关的几何误差参数,每个误差参数对位置误差的灵敏度值可表示为其傅里叶幅值平方。然后归一化处理,关键的几何误差参数为第2,3,8,15和26项误差。通过与传统的Sobol法对比,仿真结果表明两种灵敏度分析方法辨识的关键几何误差相同且灵敏度值相近。此外,本文提出的灵敏度分析计算效率优于传统Sobol法。最后为了验证关键几何误差的有效性,提出了一个关于机床关键几何误差的补偿实验。实验结果表明,补偿关键几何误差后机床的加工精度提升了48%。因此,本文提出的机床位置误差灵敏度分析方法是可行的和有效的。 相似文献
14.
建立预测模型对热误差进行预测和补偿是解决机床热误差问题的常用方法,该方法中模型的预测精度和稳健性易受环境温度影响而明显下降,对此本文提出了基于偏最小二乘法的热误差稳健建模算法。首先使用相关系数法筛选温度敏感点,并建立热误差偏最小二乘回归预测模型。进而基于全年环境温度下的多批次热误差实验数据,分析最佳的温度敏感点个数。最后建立热误差偏最小二乘回归模型,并与普通多元线性回归模型的预测效果比对分析。结果表明本文所提算法平均预测精度为5.7μm,模型稳健性为0.56μm,相较于普通多元线性回归算法,预测精度和稳健性分别提高13.8%和49.5%。说明本文所提的热误差稳健建模算法能够在环境温度变化较大时保持高预测精度和高稳健性。 相似文献
15.
Temperature variable optimization for precision machine tool thermal error compensation on optimal threshold 总被引:1,自引:0,他引:1
Machine tool thermal error is an important reason for poor machining accuracy.Thermal error compensation is a primary technology in accuracy control.To build thermal error model,temperature variables are needed to be divided into several groups on an appropriate threshold.Currently,group threshold value is mainly determined by researchers experience.Few studies focus on group threshold in temperature variable grouping.Since the threshold is important in error compensation,this paper arms to find out an optimal threshold to realize temperature variable optimization in thermal error modeling.Firstly,correlation coefficient is used to express membership grade of temperature variables,and the theory of fuzzy transitive closure is applied to obtain relational matrix of temperature variables.Concepts as compact degree and separable degree are introduced.Then evaluation model of temperature variable clustering is built.The optimal threshold and the best temperature variable clustering can be obtained by setting the maximum value of evaluation model as the objective.Finally,correlation coefficients between temperature variables and thermal error are calculated in order to find out optimum temperature variables for thermal error modeling.An experiment is conducted on a precise horizontal machining center.In experiment,three displacement sensors are used to measure spindle thermal error and twenty-nine temperature sensors are utilized to detect the machining center temperature.Experimental result shows that the new method of temperature variable optimization on optimal threshold successfully worked out a best threshold value interval and chose seven temperature variables from twenty-nine temperature measuring points.The model residual of z direction is within 3 m.Obviously,the proposed new variable optimization method has simple computing process and good modeling accuracy,which is quite fit for thermal error compensation. 相似文献
16.
17.
基于设计出超精密机床的目的,研究了机床的几何误差建模和误差的灵敏度分析。基于刚体运动学和齐次变换矩阵(Homogeneous Transformation Matrix,HTM)建立了RTTTR配置的超精密五轴机床的几何误差模型,模型涉及37个误差分量。分别对37个误差分量进行了几何误差的灵敏度分析,分析结果将应用于超精密五轴机床的设计与制造上。 相似文献
18.
19.
Digitization precision analysis is an important tool to ensure the design precision of machine tool currently.The correlative research about precision modeling and analysis mainly focuses on the geometry precision and motion precision of machine tool,and the forming motion precision of workpiece surface.For the machine tool with complex forming motion,there is not accurate corresponding relationship between the existing criterion on precision design and the machining precision of workpiece.Therefore,a design scheme on machine tool precision based on error prediction is proposed,which is divided into two-stage digitization precision analysis crucially.The first stage aims at the technology system to complete the precision distribution and inspection from the workpiece to various component parts of technology system and achieve the total output precision of machine tool under the specified machining precision;the second stage aims at the machine tool system to complete the precision distribution and inspection from the output precision of machine tool to the machine tool components.This article serves YK3610 gear hobber as the example to describe the error model of two systems and basic application method,and the practical cutting precision of this machine tool achieves to 5-4-4 grade.The proposed method can provide reliable guidance to the precision design of machine tool with complex forming motion. 相似文献