首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The high-resolution luminescent spectrum of divalent samarium excited by 355 nm UV light at 77 K, the VUV excitation spectra, the VUV excited emission spectra and EXAFS at Sm-L3 edge were reported for samarium doped strontium borophosphate, SrBPO5:Sm prepared by solid state reaction in air at high temperature. The high-resolution luminescent spectrum showed that the divalent samarium ions occupied the C lattice sites. The VUV excitation spectra indicated that the sample exhibited absorption bands with the maxima at 129 and 148 nm, respectively. The performance of EXAFS at Sm-L3 absorption edge suggested that the samarium ions were nine-coordinated and the mean distances of bond SmO were 2.38 Å.  相似文献   

2.
Nanocrystalline CeO2 samples were prepared via precipitation from aqueous cerium(IV) sulfate solution under a controlled pH. After being subjected to calcination at various temperatures to yield different particle sizes, the local structure around Ce atom was investigated by using EXAFS spectroscopy at Ce K-edge. The first shell CeO distance was found to be slightly shorter with small CeO2 particles, indicating a contraction of the lattice. There exists a significant growth in coordination number of the second cell CeCe when the particle size became larger. In terms of Debye-Waller factor (σ2), the first three coordination shells showed a consistent trend, i.e. the degree of disorder increases with reduced particle size. Moreover, σ2 of the second shell was found to be smaller than that of the first shell for all samples.  相似文献   

3.
Al2O3/3Y-TZP (30 vol.%) composite was pressurelessly sintered with addition of TiO2MnO2 and/or CaOAl2O3SiO2 glass. It was found that TiO2MnO2 addition greatly enhanced the densification of the composite by the formation of a low-viscosity liquid at sintering temperature. In contrast, the high-viscosity liquid formed by CaOAl2O3SiO2 glass improved mechanical properties because of its repressing effect on grain growth. The composite could be obtained at a temperature as low as 1400°C by co-doping with TiO2MnO2 and CAS glass. Bending strength of 552±64 MPa and fracture toughness of 6.03±0.22 MPa m1/2 were obtained with a doping level of 2 wt.% TiO2MnO2 and 2 wt.% CAS glass.  相似文献   

4.
Inner surface and the fine structure of the microchannel reactor using porous alumina support CuO/ZnO mixed with ZrO2 sol washcoat catalyst for autothermal reforming of methanol have been synthesized and characterized. Experimentally, catalyst slurries have been dried at 298 K for 5 h and then calcined at 623 K for 2 h to increase the surface area and specific pore structures of washcoat catalysts. Intensities of Cu content from XRD patterns indicate that Al2O3 assign with Cu(0) to from CuAl2O4. The EXAFS data reveals that the Cu species in washcoat have a Cu-O bonding with a bond distance of 1.96 Å and a coordination number of 2.95, respectively.  相似文献   

5.
Crystal structure and ionic conductivity of ruthenium diphosphates, ARu2(P2O7)2 A=Li, Na, and Ag, were investigated. The structure of the Ag compound was determined by single crystal X-ray diffraction techniques. It crystallized in the triclinic space group P−1 with a=4.759(2) Å, b=6.843(2) Å, c=8.063(1) Å, α=90.44(2)°, β=92.80(2)°, γ=104.88(2)°, V=253.4(1) Å3. The host structure of it was composed of RuO6 and P2O7 groups and formed tunnels running along the a-axis, in which Ag+ ions were situated. The ionic conductivities have been measured on pellets of the polycrystalline powders. The Li and Ag compounds showed the conductivities of 1.0×10−4 and 3.5×10−5 S cm−1 at 150 °C, respectively. Magnetic susceptibility measurement of the Ag compound showed that it did not obey the Curie-Weiss law and the effective magnetic moment decreased as temperature decreased due to the large spin-orbital coupling effect of Ru4+ ions.  相似文献   

6.
The new oxyarsenate Li0.5Ni0.25TiOAsO4 has been synthesized and studied by a combination of X-ray powder diffraction, neutrons powder diffraction and vibrational spectroscopy. Li0.5Ni0.25TiOAsO4 crystallizes in the monoclinic P21/c space group with the unit cell parameters: a = 6.5854(3) Å, b = 7.4665(4) Å, c = 7.4969(4) Å, β = 89.884(6)°, V = 368.62(1) Å3 and Z = 4. The structure has been determined at room temperature from neutrons diffraction by the Rietveld method analysis. It is formed by a 3D network of TiO6 octahedra and AsO4 tetrahedra sharing corners. Structural refinement shows a partial and a statistical occupancy of 2a and 2b sites by Li+ and Ni2+ ions. TiO6 octahedra are linked together by corners and form infinite chains along c-axis. Raman and infrared studies confirm the existence of -TiOTi- chains. Diffuse reflectance spectrum indicates the presence of octahedrally coordinated Ni2+ ions.  相似文献   

7.
The structure of the oxychloride layered perovskite, (CuCl)LaNb2O7, has been examined by neutron diffraction. Rietveld refinement of room temperature neutron TOF data, while consistent with the previous X-ray study, allows for an improved modeling of the structure. The structure consists of double perovskite layers (LaNb2O7) separated by copper chloride layers. The copper is octahedrally coordinated, bridging between apical oxygens from the perovskite layer and surrounded by four chlorines in the CuCl plane; this gives rise to edge-sharing CuO2Cl4 octahedra. The chlorines within the CuCl plane were found to move off the ideal (0, 0, 1/2) position to a more general position, (x, 0, 1/2). This disorder leads to a combination of four short and two long distances, common to the Jahn-Teller distorted environments for d9 copper. Structural details are discussed with respect to their influence on the chlorine disorder.  相似文献   

8.
The title compound crystallizes in the tetragonal system, a = 11.733(2) Å, c = 15.587(3) Å, I4 mm, Z = 10. Data were collected at the Argonne National Laboratory synchrotron source at λ = 0.15359 Å. Least squares refinement on F2 converged to R1 = 0.039. The oxygen coordination polyhedra around Bi and Pb display the distortions typical of 6s2 lone-pair atoms. One Bi is disordered. BiO bonds vary from 2.08(2) to 2.96(1) Å. One Pb is in cubic coordination to oxygen and the second Pb is bonded to six oxygen atoms that form a rectangular pyramid and a seventh oxygen is off one of the rectangular faces of the pyramid. PbO bonds vary from 2.303(6) to 2.804(17) Å. Of the two crystallographically independent P one is in a single tetrahedral coordination while the second is at the center of two disordered tetrahedra. Units of OM4 tetrahedra, M = Bi/Pb, articulate into a three-dimensional framework by corner and edge sharing that is strengthened by corner sharing with PO4 moieties.  相似文献   

9.
Mn-doped CeO2 nanorods have been prepared from CeO2 particles through a facile composite-hydroxide-mediated (CHM) approach. The analysis from X-ray photoelectron spectroscopy indicates that the manganese doped in CeO2 exists as Mn2+. The magnetic measurement of the Mn-doped CeO2 nanorods exhibits an enhanced ferromagnetic property at room temperature with a remanence magnetization (Mr) of 1.36 × 10−3 emu/g and coercivity (Hc) of 22 Oe. Comparative UV-visible spectra reveal the shift of the absorption peak of the CeO2 from ultraviolet region to visible light region after being doped with Mn. The room temperature ferromagnetic properties and light absorption of the Mn-doped CeO2 nanorods would have potential applications in photocatalysis and building of photovoltaic devices.  相似文献   

10.
Chemical preparation, crystal structure, calorimetric and spectroscopic investigations (IR and RMN) are given for a new non-centrosymmetric organic-cation dihydrogen phosphate-arsenate [H2(C4H10N2)][H2(As, P)O4]2. This compound is triclinic P1 with the following unit-cell parameters: a = 7.082(2) Å, b = 7.796(1) Å, c = 12.05(3) Å, α = 95.37(2)°, β = 98.38(3)°, γ = 62.98(1)°, Z = 2, V = 586.2(1) Å3 and Dx = 1.836 g cm−3. The crystal structure has been solved and refined to R = 0.03 using 2328 independent reflections. The structure can be described as infinite (H2XO)n chains spreading parallel to the b direction. These chains are themselves interconnected by a set of NH?O hydrogen bonds generated by the organic entities, alternating with the chains. Solid-state 13C, 15N and 31P MAS NMR spectroscopies are in agreement with the X-ray structure.  相似文献   

11.
The complex perovskite oxide barium iron tantalate (BFT), BaFe1/2Ta1/2O3, strontium iron tantalate (SFT), SrFe1/2Ta1/2O3 and calcium iron tantalate (CFT), CaFe1/2Ta1/2O3 are synthesized by a solid-state reaction technique. Rietveld refinement of the X-ray diffraction data of the samples shows that BFT and SFT crystallize in cubic structure, with lattice parameter a = 4.06 Å for BFT and 3.959 Å for SFT, whereas CFT crystallizes in orthorhombic structure having lattice parameters a = 5.443 Å, b = 5.542 Å and c = 7.757 Å. Fourier transform infrared spectra show two primary phonon modes of the samples at around 450 cm−1 and 620 cm−1. The compounds show significant frequency dispersion in its dielectric properties. The complex impedance plane plots of the samples show that the relaxation (conduction) mechanism in these materials is purely a bulk effect arising from the semiconductive grains. The relaxation mechanism of the samples is modelled by Cole-Cole equation. The frequency dependent conductivity spectra are found to follow the power law.  相似文献   

12.
A new titanium oxyphosphate Mg0.50TiO(PO4) has been synthesized and characterized by several physical techniques: X-ray diffraction, 31P MAS-NMR, Raman diffusion, infrared absorption and diffuse reflectance spectroscopy. It crystallizes in the monoclinic system with unit cell parameters: a = 7.367(9), b = 7.385(8), c = 7.373(9) Å, β = 120.23(1), with the space group P21/c (no. 14), Z = 4. The crystal structure has been refined by the Rietveld method using X-ray powder diffraction. The conventional R indices obtained are Rwp = 0.138, Rp = 0.096 and RB = 0.0459. The structure of Mg0.50TiO(PO4) consists of infinite chains of corner-shared [TiO6] octahedra parallel to the c-axis, crosslinked by corner-shared [PO4] tetrahedra. These infinite chains have alternating short (1.74 Å) and long (2.26 Å) TiO bonds and are similar to those found in titanium oxyphosphate MII0.50TiO(PO4) (M2+ = Fe2+, Co2+, Ni2+, Cu2+, Zn2+). The magnesium atom is located in an antiprism between two [TiO6] octahedra. 31P MAS NMR showed only a single 31P resonance line, in a good agreement with the crystal structure. Raman and IR spectra show strong bands respectively at 765 and 815 cm−1, attributed to the vibration of TiOTiO bonds in the infinite chains. The gap due to the Oxygen-Titanium(IV) charge transfer is 3.37 eV.  相似文献   

13.
The crystal structure behavior of the Sr2GdRuO6 complex perovskite at high-temperature has been investigated over a wide temperature range between 298 K ≤ T ≤ 1273 K. Measurements of X-ray diffraction at room-temperature and Rietveld analysis of the experimental patterns show that this compound crystallizes in a monoclinic perovskite-like structure, which belongs to the P21/n (#14) space group and 1:1 ordered arrangement of Ru5+ and Gd3+ cations over the six-coordinate M sites. Experimental lattice parameters were obtained to be a =5.8103(5) Å, b =5.8234(1) Å, c =8.2193(9) Å, V = 278.11(2) Å3 and angle β = 90.310(5)°. The high-temperature analysis shows the occurrence of two-phase transitions on this material. First, at 573 K it adopts a monoclinic perovskite-type structure with I2/m (#12) space group with lattice parameters a = 5.8275(6) Å, b = 5.8326(3) Å, c = 8.2449(2) Å, V = 280.31(3) Å3 and angle β = 90.251(3)°. Close to 1273 K it undergoes a complete phase-transition from monoclinic I2/m (#12) to tetragonal I4/m (#87), with lattice parameters a = 5.8726(1) Å, c = 8.3051(4) Å, V = 286.39(8) Å3 and angle β = 90.0°. The high-temperature phase transition from monoclinic I2/m (#12) to tetragonal I4/m (#87) is characterized by strongly anisotropic displacements of the anions.  相似文献   

14.
Perovskite structure-based ceramic precursors have a characteristic property of substitution in the ‘A’ site of the ABO3 structure. This makes them a potential material for nuclear waste management in synthetic rock (Synroc) technology. In order to simulate the mechanism of rare earth fixation in perovskite, PrxCa1−xTiO3 (where x = 0.1) has been synthesized through ceramic route by taking calculated quantities of oxides of Ca, Ti and Pr as starting materials. The ceramic phase has been characterized by its powder diffraction pattern. The Rietveld analysis of the X-ray diffraction data has been carried out using GSAS software to achieve the convergence which gives the Rp = 5.74% and Rwp = 8.17%. The (h, k, l) values for different lattice planes have been calculated. The praseodymium substituted perovskite crystallizes in orthorhombic symmetry with space group: Pbnm, Z = 4. The unit cell parameters at room temperature are a = 5.39609(31) Å, b = 5.44869(30) Å and c = 7.6565(5) Å. The calculated and observed values of the corresponding intensities, 2θ and density of the polycrystalline powder show good agreement. GSAS-based calculation for bond distances TiO, CaO and bond angles OTiO, OCaO has been reported.  相似文献   

15.
Transparent conducting multilayer structured electrode of a few nm Ag layer embedded in tin oxide thin film SnOx/Ag/SnOx was fabricated on a glass by RF magnetron sputtering at room temperature. The multilayer of the SnOx(40 nm)/Ag(11 nm)/SnOx(40 nm) electrode shows the maximum optical transmittance of 87.3% at 550 nm and a quite low electrical resistivity of 6.5 × 10− 5 Ω cm, and the corresponding figure of merit (T10/RS) is equivalent to 3.6 × 10− 2 Ω− 1. A normal organic photovoltaic (OPV) structure of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)/polythiophene:phenyl-C60-butyric acid methyl ester/Al was fabricated on glass/SnOx/Ag/SnOx to examine the compatibility of OPV as a transparent conducting electrode. Measured characteristic values of open circuit voltage of 0.62 V, saturation current of 8.11 mA/cm2 and fill factor of 0.54 are analogous to 0.63 V, 8.37 mA/cm2 and 0.58 of OPV on commercial glass/indium tin oxide (ITO) respectively. A resultant power conversion efficiency of 2.7% is also very comparable with the 3.09% of the same OPV structure on the commercial ITO glass as a reference, and which reveals that SnOx/Ag/SnOx can be appropriate to OPV solar cells as a sound transparent conducting electrode.  相似文献   

16.
Cobalt ethylenediammonium bis(sulfate) tetrahydrate, [NH3(CH2)2NH3][Co(SO4)2(H2O)4], has been synthesised by slow evaporation at room temperature. It crystallises in the triclinic system, space group , with the unit cell parameters: a = 6.8033(2), b = 7.0705(2), c = 7.2192(3) Å, α = 74.909(2)°, β = 72.291(2)°, γ = 79.167(2)°, Z = 1 and V = 317.16(2) Å3. The Co(II) atom is octahedrally coordinated by four water molecules and two sulfate tetrahedra leading to trimeric units [Co(SO4)2(H2O)4]. These units are linked to each other and to the ethylenediammonium cations through OW-H…O and N-H…O hydrogen bonds, respectively. The zero-dimensional structure is described as an alternation between cationic and anionic layers along the crystallographic b-axis. The dehydration of the precursor proceeds through three stages leading to crystalline intermediary hydrate phases and an anhydrous compound. The magnetic measurements show that the title compound is predominantly paramagnetic with weak antiferromagnetic interactions.  相似文献   

17.
The synthesis of SiO2 coated CeO2 nanoparticles by humid solid state reaction at room temperature is described. Transmission electron microscope results show that CeO2 particles were coated with a layer of SiO2. Binding energy of Ce 3d5/2 was shifted from 883.8 to 882.8 eV after coating in the XPS Ce 3d spectra. This confirms the chemical bond formation between SiO32− and Ce4+. Because the surface photovoltage property of CeO2 nanoparticles that were used as core materials in the experiment approaches to that of CeO2 macroparticles, peak P2 (electron transition from O 2p on surface to Ce 4f) disappeared in the surface photovoltage spectrum of CeO2 nanoparticles. Also, the effect of SiO2 on the electron transition from O 2p to Ce 4f results in the lowering of surface photovoltage response intensity of P1 peak (electron transition from O 2p in bulk to Ce 4f).  相似文献   

18.
Nanocrystallite iron oxide powders with different crystallite sizes were prepared by co-precipitation route. The prepared powders with crystallite size 75, 100 and 150 nm together with commercial iron oxide (250 nm) were tested for the catalytic oxidation of CO to CO2. The influence of different factors as crystallite size, catalytic temperature and weight of catalyst on the rate of catalytic reaction was investigated using advanced quadrupole mass gas analyzer system. It can be reported that the rate of conversion of CO to CO2 increased by increasing catalytic temperature and decreasing crystallite size of the prepared powders. The experimental results show that nanocrystallite iron oxide powders with crystallite size 75 nm can be recommended as a promising catalyst for CO oxidation at 500 °C where 98% of CO is converted to CO2. The mechanism of the catalytic oxidation reaction was investigated by comparing the CO catalytic oxidation data in the absence and presence of oxygen. The reaction which was found to be first order with respect to CO is probably proceeded by adsorption mechanism where the reactants are adsorbed on the surface of the catalyst with breaking OO bonds, then CO pick up the dissociated O atom forming CO2.  相似文献   

19.
The double perovskite Mn2FeSbO6 has been synthesized under pressure 6 GPa and temperature 1000 °C. The crystal structure refinement of Mn2FeSbO6 was carried out with the GSAS program suite using X-ray diffraction data. XRD pattern of Mn2FeSbO6 was indexed with a monoclinic unit cell (space group P21/n) with parameters: a = 5.2431(3) Å, b = 5.3935(3) Å, c = 7.6358(5) Å, β = 89.693(2)°, V = 215.927 Å3, Z = 2. It found that Fe and Sb atoms are completely ordered in 2d and 2c positions of double perovskite structure respectively. According to XPS measurements, manganese in this compound is present as Mn2+, whiles the iron - as Fe3+. Magnetization measurements revealed the presence about 3 mass% of ferromagnetic impurity in the sample. Dependence of AC susceptibility χ″ from temperature showed that magnetic properties compound are determined probably by transformation in antiferromagnetic state below 19.5 K.  相似文献   

20.
Colorless platelet crystals of monoclinic Li2TiO3 with a maximum size of 5.0 mm × 5.0 mm × 0.5 mm were successfully grown by a flux method at 1373 K using a LiBO2-Li2O system flux. The stoichiometric chemical composition of Li2TiO3 was determined by the SEM-EDX, ICP-AES and density measurement using the single crystal samples. The thermal conductivity of the Li2TiO3 single crystals was evaluated using hot-disk method. A single-crystal X-ray diffraction study confirmed the monoclinic Li2SnO3-type structure, space group C2/c and the lattice parameters of a = 5.0623(5) Å, b = 8.7876(9) Å, c = 9.7533(15) Å, β = 100.212(11)°, and V = 427.01(9) Å3. The crystal structure was refined to the conventional values of R = 2.4% and wR=3.3% for 2187 independent observed reflections. The cationic arrangement of (LiTi2) layers in Li2TiO3 was precisely revealed by the structure analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号