首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Cobalt ethylenediammonium bis(sulfate) tetrahydrate, [NH3(CH2)2NH3][Co(SO4)2(H2O)4], has been synthesised by slow evaporation at room temperature. It crystallises in the triclinic system, space group , with the unit cell parameters: a = 6.8033(2), b = 7.0705(2), c = 7.2192(3) Å, α = 74.909(2)°, β = 72.291(2)°, γ = 79.167(2)°, Z = 1 and V = 317.16(2) Å3. The Co(II) atom is octahedrally coordinated by four water molecules and two sulfate tetrahedra leading to trimeric units [Co(SO4)2(H2O)4]. These units are linked to each other and to the ethylenediammonium cations through OW-H…O and N-H…O hydrogen bonds, respectively. The zero-dimensional structure is described as an alternation between cationic and anionic layers along the crystallographic b-axis. The dehydration of the precursor proceeds through three stages leading to crystalline intermediary hydrate phases and an anhydrous compound. The magnetic measurements show that the title compound is predominantly paramagnetic with weak antiferromagnetic interactions.  相似文献   

2.
(C2H10N2)[Mn2.09Co0.91(HPO3)4] has been synthesized using mild hydrothermal conditions under autogeneous pressure. The compound crystallizes in the triclinic P-1 space group. The unit-cell parameters are a = 5.4061(8), b = 5.4150(7), c = 14.136(2) Å, α = 80.84(1), β = 85.41(1), γ = 60.00(1) and Z = 1. The compound shows a layered structure constructed from M3O12 trimer units linked thorough the (HPO3)2− phosphite oxoanions with the ethylenediammonium cations located between the sheets compensating the anionic charge of the inorganic framework. The IR and Raman spectra confirm the presence of the ethylenediammonium cation and phosphite anion. The diffuse reflectance spectrum is in accordance with the presence of Co(II) and Mn(II) high spin cations in slightly distorted octahedral symmetry. The calculated Dq and Racah parameters for the Co(II) cations are Dq = 710, B = 870 and C = 4100 cm−1. The magnetic measurements indicate the existence of antiferromagnetic interactions as the major interactions. Hysteresis observed at low temperature indicates a weak ferromagnetic component, due to a non-cancellation of spins, with coercitive field of 900 G and magnetization of 700 emu/mol.  相似文献   

3.
The three-dimensional hybrid compound Ni3(C4H4N2)3(V8O23) has been synthesized by mild hydrothermal methods under autogenous pressure at 170 °C. The structure of the phase is stable until 380 °C. The removal of the pyrazine molecules from the structure induces its collapse. The IR spectrum shows the vibration modes of the pyrazine molecule and those of the [VO4]3− groups. A UV-visible spectrum shows the characteristic bands of the Ni(II) d8-high-spin cation in a slightly distorted octahedral coordination. Magnetic measurements indicate the existence of antiferromagnetic interactions that can be fitted with a chain model to give g = 2.31, J/k = −5.3, and zJ′/k = −5.5.  相似文献   

4.
The polycrystalline sample of KBa2V5O15 ceramics was prepared by a mixed oxide method at low temperature (i.e., at 560 °C). The formation of the compound was confirmed using an X-ray diffraction technique at room temperature. Scanning electron micrograph of the material showed uniform grain distribution on the surface of the sample. Detailed studies of dielectric properties of the compound as a function of temperature at different frequencies suggest that the compound has a dielectric anomaly of ferroelectric to paraelectric type at 323 °C, and exhibits diffuse phase transition. Electrical properties of the material were analyzed using a complex impedance technique. The Nyquists plot showed the presence of both grain (>103 Hz) and the grain boundary (<103 Hz) effects in the material. Studies of electrical conductivity over a wide temperature range suggest that the compound exhibits the negative temperature coefficient of resistance behavior. The ac conductivity spectrum was found to obey Jonscher's universal power law.  相似文献   

5.
Crystal structure and ionic conductivity of ruthenium diphosphates, ARu2(P2O7)2 A=Li, Na, and Ag, were investigated. The structure of the Ag compound was determined by single crystal X-ray diffraction techniques. It crystallized in the triclinic space group P−1 with a=4.759(2) Å, b=6.843(2) Å, c=8.063(1) Å, α=90.44(2)°, β=92.80(2)°, γ=104.88(2)°, V=253.4(1) Å3. The host structure of it was composed of RuO6 and P2O7 groups and formed tunnels running along the a-axis, in which Ag+ ions were situated. The ionic conductivities have been measured on pellets of the polycrystalline powders. The Li and Ag compounds showed the conductivities of 1.0×10−4 and 3.5×10−5 S cm−1 at 150 °C, respectively. Magnetic susceptibility measurement of the Ag compound showed that it did not obey the Curie-Weiss law and the effective magnetic moment decreased as temperature decreased due to the large spin-orbital coupling effect of Ru4+ ions.  相似文献   

6.
Cu2O(SeO3) has been synthesized in supercritical hydrothermal conditions, using an externally heated steel reactor with coupled hydraulic pump for the application of high pressure. The compound crystallizes in the P213 cubic space group. The unit cell parameter is a = 9.930(1) Å with Z = 12. The crystal structure has been refined by the Rietveld method. The limit of thermal stability is, approximately, 490 °C. Above this temperature the compound decomposes to SeO2(g) and CuO(s). The IR spectrum shows the characteristic bands of the (SeO3)2− oxoanion. In the diffuse reflectance spectrum two intense absorptions characteristic of the Cu(II) cations in five-coordination are observed. The ESR spectra are isotropic from room temperature to 5 K, with g = 2.11(2). The thermal evolution of the intensity and line width of the signals suggest a ferromagnetic transition in the 50-45 K range. Magnetic measurements, at low temperatures, confirm the existence of a ferromagnetic transition with a critical temperature of 55 K.  相似文献   

7.
A survey of the subsolidus phase equilibria in the system Li2O-Nd2O3-Fe2O3 was made at subsolidus temperatures in the range 1000-1050 °C. A ternary phase was identified. The phase is centered on Li5Nd4FeO10, with a cubic lattice a = 11.9494 Å. The compound melts incongruently at 1105 °C. The magnetic susceptibility was measured in the temperature range 4-300 K. The compound is paramagnetic in the temperature range 150-300 K and follows the Curie-Weiss law. At about TN = 10 K, a long-range magnetic ordering is observed.  相似文献   

8.
Nanophase alpha-alumina and hydroxyapatite composites (with and without 5 wt% AlF3, CaF2 or MgF2, added separately) were hot pressed at 1100 °C and 1200 °C to investigate their mechanical properties and phase stability. Hydroxyapatite slightly decomposed to tri-calcium-phosphate when there was no F present. With the addition of AlF3, CaF2 or MgF2 into the composite, it improved its thermal stability and mechanical properties. Substitution of OH by F ions in hydroxyapatite was verified by the change in hydroxyapatite's hexagonal lattice parameters and unit cell volume. A fracture toughness of 2.8 MPa  and μ-hardness of 8.25 GPa were calculated for the composite containing CaF2 after the hot pressing at 1200 °C.  相似文献   

9.
Using Ca(NO3)2·4H2O, Mg(NO3)2·6H2O, Si(OC2H5)4, LiNO3 and Bi(NO3)3·5H2O as raw materials, CaO-MgO-SiO2 submicron powders were prepared at low temperature by sol-gel method. The crystallization temperature was decreased enormously by the introduction of Li-Bi liquid phase sintering aids into Ca-Mg-Si sol, and the powders with average particle sizes of 80-100 nm and 200-400 nm were obtained at the calcining temperature of 750 °C and 800 °C, respectively. The sintering characteristic and dielectric properties of powders calcined at 750 °C with different content of powders calcined at 800 °C were studied. When the content of powders calcined at 800 °C was 10 wt%, the dielectric ceramic sintered at 890 °C had compact structure, and possessed excellent microwave dielectric properties: ?r = 7.16, Q × f = 25630 GHz, τf = −69.26 ppm/°C.  相似文献   

10.
Chemical preparation, crystal structure, calorimetric and spectroscopic investigations (IR and RMN) are given for a new non-centrosymmetric organic-cation dihydrogen phosphate-arsenate [H2(C4H10N2)][H2(As, P)O4]2. This compound is triclinic P1 with the following unit-cell parameters: a = 7.082(2) Å, b = 7.796(1) Å, c = 12.05(3) Å, α = 95.37(2)°, β = 98.38(3)°, γ = 62.98(1)°, Z = 2, V = 586.2(1) Å3 and Dx = 1.836 g cm−3. The crystal structure has been solved and refined to R = 0.03 using 2328 independent reflections. The structure can be described as infinite (H2XO)n chains spreading parallel to the b direction. These chains are themselves interconnected by a set of NH?O hydrogen bonds generated by the organic entities, alternating with the chains. Solid-state 13C, 15N and 31P MAS NMR spectroscopies are in agreement with the X-ray structure.  相似文献   

11.
Tantalum hydrogen phosphate, β-TaH(PO4)2, has a three-dimensional structure that is stable to remarkably high temperature (∼600 °C) presumably due to the presence of strong hydrogen bonds. Impedance measurements indicate a low conductivity, 2.0 × 10−6 S/cm at 200 °C in 5% H2. In further studies aimed at enhancing the conductivity by aliovalent doping, we have investigated systematically the synthesis of compounds in the TaH(PO4)2-W2P2O11 system at 380 °C. As a result, a new phase, Ta2(WO2)0.87H0.26(PO4)4, was identified and subsequently the molybdenum analog Ta2(MoO2)(PO4)4 was also prepared. The structures were determined by single crystal X-ray diffraction techniques. The structures of Ta2(WO2)0.87H0.26(PO4)4 and Ta2(MoO2)(PO4)4 can be formally derived from the structure of β-TaH(PO4)2 by the replacement of two P-OH protons with an MO22+ (M = Mo and W) group together with a change in the orientation of some phosphate tetrahedra.  相似文献   

12.
SrTiO3 powder has been prepared from Sr-oxalate and TiO2 precursors, instead of using titanyl-oxalate. Sr-oxalate was precipitated from nitrate solution onto the surface of suspended TiO2 powders. Crystallization of SrTiO3 from the precursor was investigated by TGA, DTA and XRD analysis. It is evident that precursor, upon heating, dehydrates in two stages, may be due to the presence of two different types of Sr-oxalate hydrates. Dehydrated precursor then decomposes into SrCO3 and TiO2 mixture. Decomposition of SrCO3 and simultaneous SrTiO3 formation occur at much lower temperature, from 800 °C onwards, due to the fine particle size of the SrCO3 and presence of acidic TiO2 in the mixture. The precursor completely transforms into SrTiO3 at 1100 °C. About 90 nm size SrTiO3 crystallites are produced at 1100 °C/1 h, due to the lower calcination temperature and better homogeneity of the precursor.  相似文献   

13.
This work reports the first synthesis of CuO-CeO2 binary oxides with a plate-like morphology by a solvothermal method. The as-prepared CuO-CeO2 nanoplates calcined at 400 °C were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectrum, and tested for catalytic oxidation of dilute benzene in air. Various structural characterizations showed that large amounts of copper species were exposed on the CuO-CeO2 nanoplate surface. The effect of the synthesis conditions on the structure of the product, as well as the growth process of the nanoplates, has been studied and discussed. The CuO-CeO2 nanoplates exhibited an excellent catalytic activity for benzene oxidation despite its relatively low surface area and could catalyze the complete oxidation of benzene at a temperature as low as 240 °C.  相似文献   

14.
α-Fe was prepared by reduction of a fine γ-Fe2O3 powder under hydrogen at 500 °C for 8 h. The α-Fe fine powder, about 100 nm in crystallite size, was then nitrided under an ammonia flow at 130 °C for 100 h. X-ray single-phase Fe16N2 was obtained with a magnetization value of 225 emu/g at room temperature under a magnetic field of 15 kOe. The Mössbauer spectrum at room temperature could be resolved into three sets of hyperfine fields with an average magnetic moment of 2.52 μB. An additional paramagnetic component was present in the spectrum with an area ratio of 19%.  相似文献   

15.
As a result of a solid-state reaction, a compound with the formula Cd2InVO6 has been obtained for the first time. This compound melts congruently at 1050 ± 10 °C. It crystallises in the monoclinic system and the unit cell parameters are: a = 0.7964(2) nm, b = 1.1311(3) nm, c = 0.6001(1) nm, γ = 104.1°, Z = 4.  相似文献   

16.
Ternary compound Ti3SiC2 was rapidly synthesized by pulse discharge sintering the powder mixture of 1TiH2/1Si/1.8TiC without preliminary dehydrogenation. Almost single-phase dense Ti3SiC2 was synthesized at 1400 °C for 20 min. The grain size of synthesized Ti3SiC2 strongly depends on sintering temperature. The synthesis mechanism of Ti3SiC2 was revealed to be completed via the reactions among the intermediate phases of Ti5Si3, TiSi2 and the other reactants in the starting powder. The Ti-Si liquid reaction occurring above the Ti-Ti5Si3 eutectic temperature at 1330 °C was found to assist the synthesis reaction and densification of Ti3SiC2. The dehydrogenation of TiH2 was accelerated by the synthesis reactions.  相似文献   

17.
The effects of B2O3 addition, as a sintering agent, on the sintering behavior, microstructure and microwave dielectric properties of the 11Li2O-3Nb2O5-12TiO2 (LNT) ceramics have been investigated. With the low-level doping of B2O3 (≤2 wt.%), the sintering temperature of the LNT ceramic could be effectively reduced to 900 °C. The B2O3-doped LNT ceramics are also composed of Li2TiO3ss and “M-phase” phases. No other phase could be observed in the 0.5-2 wt.% B2O3-doped ceramics sintered at 840-920 °C. The addition of B2O3 induced no obvious degradation in the microwave dielectric properties but increased the τf values. Typically, the 0.5 wt.% B2O3-doped ceramics sintered at 900 °C have better microwave dielectric properties of ?r = 49.2, Q × f = 8839 GHz, τf = 57.6 ppm/°C, which suggest that the ceramics could be applied in multilayer microwave devices requiring low sintering temperatures.  相似文献   

18.
A new iron lead vanadate, Pb2FeV3O11, has been obtained. It melts incongruently at 650 ± 5 °C depositing two solid phases: Pb2V2O7 and Fe2O3. Pb2FeV3O11 crystallises in the monoclinic system. The infra-red spectrum and images of the new phase obtained by means of an electron scanning microscope are presented.  相似文献   

19.
The glass-forming region in the GeS2-Ga2S3-PbI2 system was determined and the basic parameters of thermal and optical properties (glass transition temperature, density, microhardness and transmission window) for these glasses have been measured. Better thermal stability originated from their larger difference between Tx and Tg in the range of 107-161 °C, higher glass transition temperatures between 252 and 398 °C and wide optical transmission window from 0.5 to 12.7 μm make these glasses the promising candidate materials for rare earth doped fiber amplifiers and nonlinear optical devices.  相似文献   

20.
Single crystal of erbium, ytterbium-codoped yttrium aluminum tetraborate Er,Yb:YAl3(BO3)4(Er,Yb:YAB) has been grown by the flux method. The absorption spectrum in the visible and NIR regions of Er,Yb:YAl3(BO3)4 crystal are measured at room temperature and fluorescence spectrum of Er,Yb:YAl3(BO3)4 crystal are also measured at room temperature, excited by 976 nm laser. Not only the strong NIR emission peaks located at 1548 nm was observed, but also the visible up-conversion luminescence has been found. The specific heat of the Er/Yb:YAB crystal at room temperature is 0.81 J/g °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号