首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The surfactant-assisted hydrothermal route was used to prepare fractal dendrite cerium carbonate hydroxide (CeOHCO3) microstructures. After annealing at 600 °C for 4 h, the products were transformed to CeO2. The crystal structures of the two compounds were determined by X-ray diffraction (XRD). The morphologies and microstructures were characterized by field emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HRTEM). Room temperature photoluminescence (PL) showed that a strong ultraviolet emission at 336 nm was observed for CeOHCO3, and that centered at 415 nm for CeO2 microstructures. Both of these emission peaks are different from those reported for CeOHCO3 and CeO2 with other shapes. In addition, the possible growth mechanism of dendrite CeOHCO3 microstructures and the role of surfactant polyvinyl pyrrolidone (PVP) were also investigated in this paper.  相似文献   

2.
The hierarchical walnut-like CeOHCO3 mesocrystals were prepared by a facile hydrothermal method under low temperature with β-cyclodextrin (β-CD) as assistant agent. The hierarchical walnut-like CeO2 mesocrystals were obtained by thermal decomposition of CeOHCO3 mesocrystals. The crystal phase, morphology, and structure of CeOHCO3 and CeO2 mesocrystals were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED). The time-dependent experimental results indicated that the morphology transformation from shuttle-like to walnut-like and the crystal phase transformation from orthorhombic to hexagonal simultaneously occurred in the formation processes of CeOHCO3 mesocrystals. On the basis of the morphological and crystal phase evolution processes, the formation mechanism of hierarchical walnut-like CeOHCO3 mesocrystals, including dissolution-recrystallization processes, was discussed. β-CD was believed to play an important role in the formation of the hierarchical walnut-like CeOHCO3 mesocrystals. The effects of reaction temperature, β-CD amount, and concentration of reactants on the morphologies of the products were systematically studied. CeO2 mesocrystals exhibited the distinct red-shift phenomenon in UV-vis absorption spectra.  相似文献   

3.
Nano-composites of CeO2-CeAlO3 are synthesised by solution combustion method employing (a) urea and (b) a mixture of urea and glycine as fuels with corresponding metal nitrates. The as-prepared powders are all nano-sized (5-30 nm) and the same is confirmed by broadening of the X-ray diffraction peaks and transmission electron microscopy. A starting composition of Ce:Al in the atomic ratio 4:6 gives rise to different phases depending on the fuel being used for combustion. When urea alone is used as fuel, nano-crystalline CeO2 phase is formed with Al2O3 being in the amorphous state. When the mixture of fuels is used, a mixture of nano-sized CeO2 and CeAlO3 phases is obtained. However, upon sintering at 1400 ° C in air, the stable phases CeO2 and -Al2O3 are formed in both the cases. Combustion synthesis using mixture-of-fuels is proposed to be a route to stabilise low oxidation compounds such as CeAlO3.  相似文献   

4.
Nano-sized BaNd2Ti5O14 (BNT) powders were prepared by spray pyrolysis from solutions containing ethylenediaminetetraacetic acid and citric acid. Treatment at temperatures ≥900 °C and subsequent milling resulted in nanoparticle powders with orthorhombic crystal structures. The mean particle size of the powder post-treated at 1000 °C was 160 nm. Nano-sized Bi2O3–B2O3–ZnO–SiO2 glass powder with 33 nm average particle size was prepared by flame spray pyrolysis and used as a sintering agent for the BNT. BNT pellets sintered at 1100 °C without the glass had porous structures and fine grain sizes. Those similarly sintered with the glass had denser structures and larger grains.  相似文献   

5.
Spherical nanocrystalline precursors of ceria (CeO2) and CeO2 powder with different size distributions were prepared by a reflux method using cerium nitrate hexahydrate (CN) as the cerium source and ammonium carbonate (AC) as the precipitant. The crystalline phases of the synthesized CeO2 precursors were identified as orthorhombic Ce2O(CO3)2·H2O and hexagonal CeCO3OH. The particle size and shape could be easily controlled by the CN concentration and the ratio of [AC]/[CN]. The CeO2 precursors were calcined at 400-700 °C to obtain CeO2. The particle size distribution and morphology of the synthesized CeO2 powders were unaffected by the calcination. The specific surface area of the CeO2 powders was increased by the release of CO2 and H2O during the calcination. The calcination temperature is an important factor for the preparation of CeO2 powder with a high surface area.  相似文献   

6.
Ceria (CeO2) nanoparticles of 10-30 nm in average particle size have been synthesized via electrochemical deposition method in cerium(III) chloride solution with an undivided cell as electrochemical cell and ethanol-acetylacetone as additives. X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transformation infrared spectroscopy (FT-IR) and thermal analysis (TG-DTA) are introduced to characterize the samples. The results indicate that the as-prepared powders after being treated at 650 °C are nanocrystalline with the cubic fluorite structure and the sphericity in shape. It is revealed that the size of ceria nanoparticles can be decreased effectively by adding the ethanol-acetylacetone solution. In addition, the possible formed mechanism of CeO2 nanometer-scale powder. The role of additive is also investigated in this paper.  相似文献   

7.
Nanocrystalline CeO2 particles doped in the range of 0-20% of Ca2+, La3+, and Zr4+ have been prepared from hydrothermal synthesis of nitrate solutions at 200 °C and the influences of the dopants on microstructure and optical properties of the nanoparticles have been investigated. The unit cell parameter is found to be modified by −0.39, +0.83 and +0.16% for doping of 20% Zr4+, La3+, and Ca2+, respectively. For each batch prepared, nanoparticles with a narrow size distribution of 5-15 nm have been obtained. A high-resolution transmission electron microscopy investigation reveals that these particles are single crystals mostly having hexagonal, square or circular two-dimensional projections. UV-visible spectra of doped powders exhibit shift of the absorption edge and absorption peak with respect to those of the undoped CeO2 particles and has been attributed to compensation of Ce3+ and decreasing crystallite size as result of doping.  相似文献   

8.
Gadolinia doped ceria (Ce0.9Gd0.1O1.95, GDC) electrolyte films were tape cast from oxalate coprecipitated GDC powders, gelcast GDC powders and their mixtures, respectively, to evaluate the effects of the original particle size and distribution on the properties of the green and sintered GDC cast tapes. The apparent density of different original powders, as well as the green density, sintered behavior, and electrical conductivity of tapes cast from the various starting powders were investigated. Mixing the coprecipitated and the gelcast GDC powders not only results in a higher packing efficiency of particles in the loose powders, but also results in higher green and sintered densities of cast tapes. Furthermore, tapes cast from the 50/50 powder mixtures can be sintered to 96.2% of theoretical density at relatively low sintering temperature of 1400°C, whereas those from the oxalate coprecipitated and from the gelcast powders were only 89.7 and 94.1% dense, respectively. The ac impedance measurement shows that GDC films cast from the 50/50 powder mixture exhibit good electrical conductivity (4.2 and 6.0 S m−1 at 700 and 800°C in air, respectively). The test results have revealed that high-density GDC films can be fabricated by tape casting technique at relatively low sintering temperature by optimizing the particle size distribution of the starting powders.  相似文献   

9.
The particle size and morphology of hydrothermally synthesised lead zirconate titanate (PZT) powders can be controlled by concentrations of the mineraliser such as potassium hydroxide (KOH), and the hydrothermal synthesis temperature and time, which all influence the particle nucleation and growth mechanisms. The mineraliser is crucial in facilitating both the in-situ transformation process during the nucleation stage and the nuclei-coagulation process during the subsequent growth stage. Its concentration must be high enough to ensure the formation of only pure perovskite PZT particles but low enough to prevent excessive PZT particle growth. The minimum necessary mineraliser concentration has, however, strong dependence on both the hydrothermal synthesis temperature and chemical environment in hydrothermal solution. Thus, perovskite PZT powders with ca. 200 nm particle size and narrow particle size distribution can be synthesised hydrothermally at 300°C using KOH as a mineraliser with a minimum concentration of 0.4 M.  相似文献   

10.
Crystalline BaTiO3 powders were precipitated by reacting fine TiO2 particles with a strongly alkaline solution of Ba(OH)2 under hydrothermal conditions at 80°C to 240°C. The characteristics of the powders were investigated by X-ray diffraction, transmission electron microscopy, thermal analysis and atomic emission spectroscopy. For a fixed reaction time of 24 hours, the average particle size of BaTiO3 increased from 50 nm at 90°C to 100 nm at 240°C. At synthesis temperatures below 150°C, the BaTiO3 particles had a narrow size distribution and were predominantly cubic in structure. Higher synthesis temperatures produced a mixture of the cubic and tetragonal phases in which the concentration of the tetragonal phase increased with increasing temperature. A bimodal distribution of sizes developed for long reaction times (96 h) at the highest synthesis temperature (240°C). Thermal analysis revealed little weight loss on heating the powders to temperatures up to 700°C. The influence of particle size and processing-related hydroxyl defects on the crystal structure of the BaTiO3 powder is discussed.  相似文献   

11.
TiN fine powders were prepared by the reaction of TiH2 with ammonium chloride at various temperatures under a flow of N2/H2 mixed gas. In a temperature range of 500-800°C, the powder samples obtained had a particle size of 3-20 nm, and a specific surface area of 30-60 m2/g. The particle size increased with the increase of the reaction temperature. The lattice parameters and the chemical analysis data showed that the TiN powder had the stoichiometric composition. The TiN powder prepared at temperatures of 600-800°C showed superconductivity with a transition temperature of 4.0-4.5 K.  相似文献   

12.
High phase purity barium metazirconate powders have been synthesized from a modified solid-state reaction. Reactive powders consisting of submicron particles and narrow particle size distribution were obtained by heating a 1:1 molar mixture of barium nitrate and zirconyl nitrate at 800°C up to 8 h. Simultaneous thermal analysis (TG-DTA) assisted in elucidating the probable reaction pathways leading to the formation of the target compound in the BaO-ZrO2 system. Systematic structural and microstructural characterization on the green powders and the compacts sintered up to 1700°C were carried out. A two-stage sintering schedule consisting of a 6 h soak at 1600°C followed by slow heating up to 1700°C with no dwell, led to highly dense microstructural features.  相似文献   

13.
Ce3+-activated yttrium aluminum garnet (Y3Al5O12:Ce, YAG:Ce) powder as luminescent phosphor was synthesized by the solid-state reaction method. The phase identification, microstructure and photoluminescent properties of the products were investigated by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), absorption spectrum and photoluminescence (PL) analysis. Spherical phosphor particle is considered better than irregular-shaped particle to improve PL property and application, so this phosphor was granulated into a sphere-like shape by a spray-drying device. After calcinating at 1500 °C for 0, 4, and 8 h, the product was identified as YAG and CeO2 phases. The CeO2 phase content is decreased by increasing the calcination time or decreasing the Ce3+ doping content. The product showed higher emission intensity resulted from more Ce3+ content and larger grain size. The product with CeO2 was found to have lower emission intensity. This paper presents the crystal structures of Rietveld refinement results of powder XRD data.  相似文献   

14.
Nanocrystalline CeO2 powders were synthesized by the combustion reactions using citric acid and glycol as fuels and nitrate as an oxidant. The adiabatic flame temperatures in the auto ignition processes of the precursors were calculated theoretically. XRD measurements indicated that the powders produced in the combustion processes were cubic fluorite CeO2 phase. The size and morphology of the particles and extent of agglomeration in the powders were studied using transmission electron microscopy (TEM) and the particle size analyzer respectively. Blue shifts of the absorption peak of the as-prepared powders were observed.  相似文献   

15.
A modified citrate precursor method, combining the advantages of the nitrate autocombustion method by introducing the nitric acid, was successfully used to synthesize ultrafine Ba0.70Sr0.30TiO3 powders. Slight agglomerated and homogenized BST powders, with an average particle size of 20 nm, were obtained at 800 °C. Combining the results of TG/DTA and XRD, it can be concluded that the formation of BST powders takes place via two reaction mechanisms: decomposition of an intermediate oxycarbonate mechanism (DIOm) at low temperature, and solid-state reaction mechanism (SSRm) between nanocrystalline carbonates and amorphous TiO2 at high temperature. TEM shows higher amount of CA led to BST powders of better quality in morphology. Based on results of chemical analysis, it is suggested that higher amount of CA drives the mechanism to tend to DIOm. By simply adjusting the ratio of reagents, the reaction mechanism can be dominated and we can greatly control the final morphology of the powders.  相似文献   

16.
《Materials Letters》2004,58(3-4):390-393
Homogeneous and well-crystallized nano-ceria (CeO2) powders were produced by hydrothermal synthesis using a mixture of H2O2 as the oxidizer and NH4OH as the mineralizer. The precipitates were prepared by mixture ligands of OH and OOH derived from NH4OH and H2O2. The hydrothermal synthesis was conducted at 200 °C for 6 h.The synthesized ceria powders were characterized as the crystalline phase identification by X-ray diffractometry, the chemical bonding by infrared spectrophotometer (FT-IR) and the morphology and particle size by transmission electron microscopy (TEM).Crystallization behavior of ceria powders using a mixture of oxidizer and mineralizer was more influenced by OOH ligands than by OH ligands to form Ce(OH)x(OOH)4−x as precursor with increasing concentrations of H2O2 with 10–20 times of the cerium(III) ion. In all samples, synthesized particle size was decreased with increasing concentration of oxidizer ranging from 6 to 12 nm in diameter. Morphology and size distribution of synthesized particles were relatively spherical and uniform, respectively.  相似文献   

17.
CeO2 nano-octahedrons were synthesized with a facile hydrothermal synthesis process where Ce(NO3)3·6H2O and urea were used as a cerium resource and mineralizer respectively and no surfactant or template was applied. The effects of synthesis parameters such as reaction temperature, reaction time, as well as the dosages of Ce (NO3)3·6H2O and urea were studied. X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis were conducted to characterize the crystalline and morphology of the obtained CeO2 powders. The optimal reaction condition to prepare the CeO2 of the desired fluorite structure was established. The possible mechanism of synthesis of CeO2 with a nano-octahedron morphology was illustrated.  相似文献   

18.
Y3 − xCexAl5O12 (YAG:Ce3+) phosphor powders were successfully prepared by hydrothermal-homogenous precipitation (HHP) method, under mild conditions with inexpensive aluminum and yttrium nitrates as the starting materials and urea as homogenous precipitant. The pure YAG crystalline phase could be formed after hydrothermal treatment at 100 °C for 4 h and 240 °C for 20 h and postannealing process at 1200 °C for 2 h. All of the as-prepared YAG:Ce3+ powders did not have the CeO2 phase. The photoluminescence spectrum of crystalline YAG:Ce3+ phosphors showed the emission intensity of phosphor increased with increasing the annealed temperature and reached its maximum as the molar fraction of cerium ion was 0.10, and also showed the maximum emission wavelength nearly unchanged with the calcination temperature and cerium doping concentration.  相似文献   

19.
Novel wet-chemical methods of synthesis have been adopted to synthesize nano-crystalline CeO2 and Gd-substituted compositions aiming to explore an efficient oxide ion conducting solid electrolyte for intermediate temperature solid oxide fuel cell (IT-SOFC) applications. Nano-crystalline CeO2 powders were synthesized by combustion method using redox mixture of cerric ammonium nitrate or cerium nitrate and maleic acid or 1,3-dimethylurea and compared with high surface area CeO2 powders prepared by hydrothermal technique with microwave precipitated precursor from aqueous solutions of (NH4)2Ce(NO3)6 and urea. The grain size achieved by the hydrothermal technique is ∼7 nm which is smaller than that of commercial nano CeO2 powders. Conventional or microwave sintering was used to prepare dense Ce0.8Gd0.2O1.9 pellets from the ceria powders made of redox mixture of cerium nitrate, 1,3-dimethylurea (DMU) and Gd2O3 as the starting ingredients. The samples were characterized by X-ray diffractometry (XRD), transmission electron microscopy (TEM), diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), and ac impedance spectroscopy. The ionic conductivity measured for the pellet sintered at 1400 °C is 1 × 10−2 and 2.4 × 10−2 S/cm at 700 °C and 800 °C respectively.  相似文献   

20.
Single-crystalline cerium carbonate hydroxide (Ce(CO3)(OH)) with dendrite morphologies have been successfully synthesized by hydrothermal method at 150 °C using Ce(NO3)3·6H2O as the cerium source, aqueous carbamide as both an alkaline and carbon source and poly(vinyl pyrrolidone) (PVP) as surfactant. Ceria (CeO2) with dendrite morphologies have been fabricated by a thermal decomposition-oxidation process at 500 °C for 6 h using single-crystalline Ce(CO3)(OH) dendrites as the precursor. The dendrite morphologies of Ce(CO3)(OH) was sustained after thermal decomposition-oxidation to CeO2. The as-prepared products were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FE-SEM), and thermogravimetric analysis (TG).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号