首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, the synthesis of nanocrystalline Ce0.9Zr0.1O2 powders via the gel-combustion method, using different fuels, and following either stoichiometric or non-stoichiometric pH-controlled routes is investigated. The objective is to evaluate the effect of synthesis conditions on the textural and morphological properties, and the crystal structure of the synthesized materials. The solids were characterized by nitrogen physisorption, Scanning Electron Microscopy (SEM), X-ray powder diffraction (XPD), and Carbon-Hydrogen-Nitrogen Elemental Analysis (CHN).All the powders exhibited nanometric crystallite size, fluorite-type structure and negligible carbon content. Synthesis conditions strongly affect the average crystallite size, the degree of agglomeration, the specific surface area and the pore volume. Our results indicate that, by controlling the synthesis conditions it is possible to obtain solids with custom-made morphological properties.  相似文献   

2.
Ceramic samples of La0.1Sr0.9−xDyxTiO3 (x = 0.01, 0.03, 0.07, 0.10) have been prepared by the solid-state reaction method. Characterization from the powder X-ray diffraction indicates that their crystal structure changes from cubic to tetragonal phase. Their electrical and thermal transport properties are measured in the temperature range of 300-1100 K. n-Type thermoelectric is obtained with large Seebeck coefficient. The figure of merit is markedly improved, due to relatively lower electrical resistivity and thermal conductivity by Dy doping effect. A much lower electrical resistivity of 0.8 mΩ cm at room temperature is obtained in La0.1Sr0.8Dy0.1TiO3, and with a relatively lower thermal conductivity of 2.5 W/m K at 1075 K. The maximum figure of merit reaches ∼0.36 at 1045 K for La0.1Sr0.83Dy0.07TiO3, which is the largest value among n-type oxide thermoelectric ceramics.  相似文献   

3.
The effect of CaO-SiO2-B2O3 (CSB) glass addition on the sintering temperature and dielectric properties of BaxSmyTi7O20 ceramics has been investigated using X-ray diffraction, scanning electron microscopy and differential thermal analysis. The CSB glass starts to melt at about 970 °C, and a small amount of CSB glass addition to BaxSmyTi7O20 ceramics can greatly decrease the sintering temperature from about 1350 to about 1260 °C, which is attributed to the formation of liquid phase. It is found that the dielectric properties of BaxSmyTi7O20 ceramics are dependent on the amount of CSB glass and the microstructures of sintered samples. The product with 5 wt% CSB glass sintered at 1260 °C is optimal in these samples based on the microstructure and the properties of sintering product, when the major phases of this material are BaSm2Ti4O12 and BaTi4O9. The material possesses excellent dielectric properties: ?r = 61, tan δ = 1.5 × 10−4 at 10 GHz, temperature coefficient of dielectric constant is −75 × 10−6 °C−1.  相似文献   

4.
TiO2 ceramics doped with 0.75 mol% Ca and 2.5 mol% Ta were sintered at different temperatures ranging from 1300 to 1450°C. The effects of sintering temperature on the microstructure, nonlinear electrical behavior, and dielectric properties of the ceramics were studied. The sample sintered at 1300°C exhibits the highest nonlinear coefficient (5.5) and a comparatively lower relative dielectric constant.  相似文献   

5.
Aluminium oxide being environmentally stable and having high transmittance is an interesting material for optoelectronics devices. Aluminium oxide thin films have been successfully deposited by hot water oxidation of vacuum evaporated aluminium thin films. The surface morphology, surface roughness, optical transmission, band gap, refractive index and intrinsic stress of Al2O3 thin films were studied. The cost effective vapor chopping technique was used. It was observed that, optical transmittance of vapor chopped Al2O3 thin film showed higher transmittance than the nonchopped film. The optical band gap of vapor chopped thin film was higher than the nonchopped Al2O3, whereas surface roughness and refractive index were lower due to vapor chopping.  相似文献   

6.
We report a comparative study of the dielectric properties of solid-state (ceramic method) synthesized NaNbO3 (NN), Na0.75K0.25NbO3 (K25NN), K0.5Na0.5NbO3 (KNN) and some composite materials containing In2O3 and NN or KNN using an AC impedance method. Powder X-ray diffraction (PXRD) was employed to investigate the phase purity. No significant amount of impurity phase was observed for NN, K25NN, and KNN. Substitutions of 10, 15 and 25 mol% In3+ for Nb5+ in KNN and NN using solid-state reactions at 1150 °C resulted in composite materials. AC impedance studies of NN, KNN and K25NN in the temperature range of 500-800 °C showed a single semicircle (attributed to the bulk property) in the high-frequency range of 103 to 106 Hz. The individual contributions from the bulk and grain boundary on the dielectric properties were resolved and quantified from the impedance data. The calculated dielectric values for NN were consistent with previously reported in the literature. 10% Indium based KNN composite materials had the lowest dielectric loss 0.585 and the dielectric constant of 233 at 100 kHz at the temperature of 650 °C.  相似文献   

7.
The ceramics with 0.90Pb(Zr0.50Ti0.50)O3-0.07Pb(Mn1/3Nb2/3)O3-0.03Pb(Ni1/2W1/2)O3 were prepared by adding Cr2O3. The effects of Cr2O3 doping on the phase structure, the microstructure and the electrical properties of ceramics were investigated. Meanwhile, the temperature stabilities of the resonant frequency (fr) and the electromechanical coupling factor (Kp) were studied. The results showed that the better temperature stability could be obtained at x = 0.2 wt.% when the calcining temperature was 800 °C and the sintering temperature was 1150 °C. The parameters were Δfr/fr25 °C = −0.17% and ΔKp/Kp25 °C = −1.39%. Moreover, the optimized electrical properties were also achieved, which were KP = 0.54, Qm = 1730, d33 = 330 pC/N, ?r = 2078 and tan δ = 0.0052. The optimized properties make the ceramics with this composition to be a good candidate for high power piezoelectric transformers applications.  相似文献   

8.
Low temperature co-fired ceramic (LTCC) is prepared by sintering a glass selected from CaO-SiO2-B2O3 system, and its sintered bodies are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). It is found that the optimal sintering temperature for this glass-ceramic is 820 °C for 15 min, and the major phases of this material are CaSiO3, CaB2O4 and SiO2. The glass-ceramic possesses excellent dielectric properties: ?r = 6.5, tan δ < 2 × 10−3 at 10 MHz, temperature coefficient of dielectric constant about −51 × 10−6 °C−1 and coefficient of thermal expansion about 8 × 10−6 °C−1 at 20-400 °C. Thus, this material is supposed to be suitable for the tape casting process and be compatible with Ag electrode, which could be used as the LTCC materials for the application in wireless communications.  相似文献   

9.
We demonstrate the correlation between sintering behavior and microstructural observations in low-temperature sintered, LaNbO4 microwave ceramics. Small CuO additions to LaNbO4 significantly lowered the sintering temperature from 1250 to 950 °C. To elucidate the sintering mechanism, the internal microstructure of the sample manipulated by a focused ion beam (FIB) was investigated using transmission electron microscopy (TEM) and energy-dispersive spectroscopy (EDS). LaNbO4 with 3 wt% CuO sintered at 950 °C for 2 h possessed the following excellent microwave dielectric properties: a quality factor (Qxf) of 49,000 GHz, relative dielectric constant (?r) of 19.5, and temperature coefficient of resonant frequency (τf) of 1 ppm/°C. The ferroelastic phase transformation was also investigated using in situ X-ray diffraction (XRD) to explain the variation of τf in low-temperature sintered LaNbO4 as a function of CuO content.  相似文献   

10.
We have carried out structural, magnetic and magneto transport measurements of the electron-doped manganite La0.3Ca0.7MnO3 substituted with 10% of Cr, Fe and W on the Mn site. The substitution by Cr, Fe and W suppresses the charge order transition present at 260 K in the parent compound. All the samples show a semiconducting behavior. Whereas the parent compound does not show any magneto resistance (MR) even in a field of 14 T, a maximum MR of 6% in 5 T at 25 K is observed for the Cr substituted sample that is attributed to a spin-cluster glass like states induced by Cr. The Fe and W substituted samples showed a MR of 1.5 and 3%, respectively which may be attributed to a smaller number of FM domains/spin-clusters and to an increase in anti-ferromagnetic interaction.  相似文献   

11.
The microstructures and the microwave dielectric properties of the (1 − x)Mg4Nb2O9-xCaTiO3 ceramic system were investigated. In order to achieve a temperature-stable material, CaTiO3 (τf ∼ 800 ppm/°C) was chosen as a τf compensator and added to Mg4Nb2O9 (τf ∼ −70 ppm/°C) to form a two phase system. It was confirmed by the XRD and EDX analysis. By appropriately adjusting the x-value in the (1 − x)Mg4Nb2O9-xCaTiO3 ceramic system, near-zero τf value can be achieved. A new microwave dielectric material, 0.5Mg4Nb2O9-0.5CaTiO3 applicable in microwave devices is suggested and possesses the dielectric properties of a dielectric constant ?r ∼ 24.8, a Q × f value ∼82,000 GHz (measured at 9.1 GHz) and a τf value ∼−0.3 ppm/°C.  相似文献   

12.
Capacitor-like Au/BiFeO3/SrRuO3 thin film with (1 1 1) orientation was grown on the SrTiO3 (1 1 1) substrate by radio frequency magnetic sputtering. It shows a resistive switching behavior, where a stable hysteresis in current–voltage curve was well developed by applying an optimum voltage at room temperature, and it reached the saturation at a bias voltage of 8 V. The Child's law in Vmax → 0 direction and the interface-limited Fowler–Nordheim tunneling in 0 → Vmax direction, together with the polarization reversal in the BiFeO3 barrier, are shown to involve in the observed resistive hysteresis.  相似文献   

13.
Pb0.97La0.02(Zr0.95Ti0.05)O3 antiferroelectric thin films with thickness of 500 nm were successfully deposited on TiO2 buffered Pt(1 1 1)/Ti/SiO2/Si(1 0 0) and Pt(1 1 1)/Ti/SiO2/Si(1 0 0) substrates via sol-gel process. Microstructure of Pb0.97La0.02(Zr0.95Ti0.05)O3 thin films was studied by X-ray diffraction analyses. The antiferroelectric nature of the Pb0.97La0.02(Zr0.95Ti0.05)O3 thin films was confirmed by the double hysteresis behaviors of polarization and double buffer fly response of dielectric constant versus applied voltage at room temperature. The capacitance-voltage behaviors of the Pb0.97La0.02(Zr0.95Ti0.05)O3 films with and without TiO2 buffer layer were studied, as a function of temperature. The temperature dependence of dielectric constant displayed a similar behavior and the Curie temperature (Tc) was 193 °C for films on both substrates. The current caused by the polarization and depolarization of polar in the Pb0.97La0.02(Zr0.95Ti0.05)O3 films was detected by current density-electric field measurement.  相似文献   

14.
In the present investigation (Pb0.5Ba0.5)ZrO3 (PBZ) thin films doped by K (KPBZ) from 0 to 5 mol% were successfully deposited on Pt-buffered silicon substrates by a sol-gel method. The K content dependence of microstructure and electrical properties of KPBZ thin films were studied in detail. It was found that, although all the films displayed a pure perovskite structure without obvious difference, the surface roughness of KPBZ films was decreased with increasing K content. Dielectric measurements showed that the figure of merit (FOM) values of KPBZ thin films were greatly increased by K-doping, and at the same time that the temperature-dependent stability was also improved. Thus, K doping is a promising way to optimize the overall electrical properties of PBZ thin films for potential application in tunable devices.  相似文献   

15.
In Ca2+-substituted NdCrO3, single-phase perovskite compounds (Nd1−xCax)CrO3, where x=0-0.25, have been formed by a citric acid processing. (Nd1−xCax)CrO3 powders consisting of submicrometer-size particles are sinterable; dense materials can be fabricated by sintering for 2 h at 1700°C under atmospheric pressure. The relative densities, grain sizes, and electrical conductivities increase with increased Ca2+ content. (Nd0.75Ca0.25)CrO3 materials show an excellent electrical conductivity of 1.9×10 S m−1 at 1000°C.  相似文献   

16.
Highly oriented (1 0 0) NaxWO3 thin films were fabricated in the composition range 0.1 ≤ x ≤ 0.46 by pulsed laser deposition technique. The films showed transition from metallic to insulating behaviour at a critical composition between x = 0.15 and 0.2. The pseudo-cubic symmetry of NaxWO3 thin films across the transition region is desirable for understanding the composition controlled metal-insulator transition in the absence of any structural phase transformation. The electrical transport properties exhibited by these films across the transition regime were investigated. While the resistivity varied as T2 at low temperatures in the metallic regime, a variable range hopping conduction was observed for the insulating samples. For metallic compositions, a non-linear dependence of resistivity in temperature was also observed from 300 to 7 K, whose exponent varied with the composition of the film.  相似文献   

17.
Transparent conducting oxide (TCO) films in the ZnO-In2O3 system were prepared by a pulsed laser deposition method. A target that consists of the mixture of ZnO and In2O3 powders was used. Influences of the target composition x (x = [Zn]/([Zn] + [In])) and heater temperature on structural, electrical and optical properties of the TCO films were examined. Introduction of oxygen gas into the chamber during the deposition was necessary for improvement in the transparency of the deposited films. The amorphous phase was observed for a wide range of x = 0.20-0.60 at 110 °C. Minimum resistivity was 2.65 × 10−4 Ω cm at x = 0.20. The films that showed the minimum resistivity had an amorphous structure and the composition shifted toward larger x, as the substrate temperature increased. The films were enriched in indium compared to the target composition and the cationic In/Zn ratio increased as the substrate temperature was increased.  相似文献   

18.
Sn doping in an n-type transparent conducting oxide MgIn2O4 is carried out and its effect on the high temperature transport properties viz. thermopower and electrical resistivity is studied. A solid solution exists in the composition window Mg1+xIn2−2xSnxO4 for 0 < x ≤ 0.4. The band gap as well as the transport properties increases with increasing Sn concentration. The high temperature resistivity properties indicate degenerate semiconducting behavior for all the compositions. The highest figure of merit obtained is 0.12 × 10−4 K−1 for the parent compound at 600 K.  相似文献   

19.
Transport, specific heat, and magnetic measurements have been performed on three alkali hollandites: KRu4O8, RbRu4O8, and a newly synthesized Cs analog, Cs0.8Li0.2Ru4O8, which was determined to have space group I4/m (#87) and lattice parameters, a = 10.0850(4) and c = 3.12180(20). In contrast to the ruthenium perovskites, which display a wide range of electrical and magnetic behavior, the alkali hollandites are simple paramagnetic metals.  相似文献   

20.
In this study, we tried to lower the sintering temperature of Ba0.6Sr0.4TiO3 (BST) ceramics by several kinds of adding methods of Bi2O3, CuO and CuBi2O4 additives. The effects of different adding methods on the microstructures and the dielectric properties of BST ceramics have been studied. In the all additive systems, the single addition of CuBi2O4 was the most effective way for lowering the sintering temperature of BST. When CuBi2O4 of 0.6 mol% was mixed with starting BST powders and sintered at 1100 °C, the derived ceramics demonstrated dense microstructure with a low dielectric constant (? = 4240), low dielectric loss (tan δ = 0.0058), high tunability (Tun = 38.3%) and high Q value (Q = 251). It was noteworthy that the sintering temperature was significantly lowered by 350 °C compared with no-additive system, and the derived ceramics maintained the excellent microwave dielectric properties corresponding to pure BST.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号