首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The morphologic response of neonatal mouse retina to the alkylating agent N-methyl-N-nitrosourea (MNU) was examined at different periods of retinal development. A dose of 60 mg/kg N-methyl-N-nitrosourea was injected intraperitoneally to neonatal C57BL mice at 0, 3, 5, 8, 11, 14, 17, and 20 days of age and to C3H mice at 0 days of age, and the retinas were examined sequentially. In the C57BL mice, MNU evoked a time-dependent occurrence of retinal dysplasia and retinal degeneration. With MNU treatment at day 0 and day 3 (the stage of retinal cell proliferation), retinal dysplasia characterized by the progressive disorganization of neuroblasts, which led to the formation of rosettes, was found in the outer neuroblastic/nuclear layer above the normal pigment epithelial cells during days 8-20, but decreased at day 50. The rosettes were surrounded by photoreceptor segments and Müller cell processes, and by photoreceptor nuclei. The MNU response was related to retinal differentiation; following MNU treatment at day 5 or 8 (the stage of retinal cell differentiation) the cells were much less sensitive (i.e. no retinal response was found). However, with MNU treatment at days 11, 14, 17, and 20 (after cellular differentiation), retinal degeneration characterized by selective photoreceptor apoptosis was seen. These results suggest that there is a critical period for the time of MNU administration in the development of mouse retinal lesions. In C3H (rd/rd) mice, MNU treatment at day 0 resulted in retinal degeneration with only slight rosette formation at the peripheral retina.  相似文献   

2.
PURPOSE: Expressions of certain macromolecules are altered by experimental retinal detachment in the cat. Related alterations in micromolecular signatures of neurons, Müller cells, and the retinal pigment epithelium (RPE) were investigated. METHODS: High-performance immunochemical mapping, image registration, and quantitative pattern recognition were combined to analyze the amino acid contents of virtually all retinal cell types after 3 to 84 days of detachment. RESULTS: Retinal micromolecular signatures showed a spectrum of alterations. The glutamate contents of Müller cells increased and remained elevated for weeks after detachment. Multispectral signatures of Müller cells showed massive metabolic instability in early detachment stages that ultimately resolved as a homogeneous profile significantly depleted in glutamine. Retinal pigment epithelial cell signals also changed dramatically, displaying an initial glutamate spike and then a prolonged decline, even as taurine levels followed an opposite pattern of initial loss and slow restoration. Neurotransmitter signatures of surviving neurons showed extensive precursor-level variation, and, in one case, GABAergic horizontal cells displayed anomalous sprouting. CONCLUSIONS: Dramatic changes in Müller cell amino acid signatures triggered by retinal detachment are partially consistent with losses in glutamine synthetase activity. Taurine signal variations suggest that orthotopic RPE cells attempt to regulate abnormal taurine concentrations in the enlarged subretinal space. Surviving neurons possess characteristic neurotransmitter signals, but their metabolite regulation seems abnormal. On balance, microchemical and structural anomalies develop in the detached cat retina that represent serious barriers to recovery of normal visual function.  相似文献   

3.
Diffuse lamellar keratitis. A new syndrome in lamellar refractive surgery   总被引:1,自引:0,他引:1  
PURPOSE: Alpha2-adrenergic agonists have specific and selective effects on the retina to induce expression of basic fibroblast growth factor and to protect photoreceptors. This work explores the signaling pathway that mediates these effects. METHODS: Alpha2-adrenergic agonists xylazine and clonidine were administered systemically to male adult Sprague-Dawley rats. The activation state of extracellular signal-regulated kinases (ERKs) in the retina was assessed by immunoblot analysis, using antibodies that specifically recognize the dually phosphorylated forms of p44/p42 ERKs. Localization of phosphorylated ERKs was determined by immunocytochemistry. RESULTS: Intramuscular injection of 6 mg/kg xylazine induced an increase in ERK phosphorylation in the retina within 30 minutes that lasted 3 hours. Xylazine induced ERK phosphorylation at 1 mg/kg and reached a maximum at 10 mg/kg. Injection of clonidine also induced ERK phosphorylation in the retina. Yohimbine, a specific alpha2-adrenergic antagonist, completely prevented the induction of ERK phosphorylation. Immunocytochemical studies showed that the increase in ERK phosphorylation occurred mainly in Müller cells. In the brain, xylazine injection resulted in a decrease in ERK phosphorylation. CONCLUSIONS: Our results indicate that systemically administered alpha2-adrenergic agonists selectively activate ERKs in retinal Müller cells. The induced activation of ERKs in Müller cells is probably one of the early events that result in photoreceptor protection. These results also indicate that Müller cells are unique in response to alpha2-adrenergic agonists and imply a role for Müller cells in alpha2-adrenergic agonist-induced photoreceptor protection.  相似文献   

4.
In the retina of most vertebrates there exists only one type of macroglia, the Müller cell. Müller cells express voltage-gated ion channels, neurotransmitter receptors and various uptake carrier systems. These properties enable the Müller cells to control the activity of retinal neurons by regulating the extracellular concentration of neuroactive substances such as K+, GABA and glutamate. We show here how electrophysiological recordings from enzymatically dissociated mammalian Müller cells can be used to study these mechanisms. Müller cells from various species have Na(+)-dependent GABA uptake carriers, but only cells from primates have additional GABA receptors that activate Cl- channels. Application of glutamate analogues causes enhanced membrane currents recorded from Müller cells in situ but not from isolated cells. We show that mammalian Müller cells have no ionotropic glutamate receptors but respond to increased K+ release from glutamate-stimulated retinal neurons. This response is involved in extracellular K+ clearance and is mediated by voltage-gated (inwardly rectifying) K+ channels which are abundantly expressed by healthy Müller cells. In various cases of human retinal pathology, currents through these channels are strongly reduced or even extinguished. Another type of voltage-gated ion channels, observed in Müller cells from many mammalian species, are Na+ channels. In Müller cells from diseased human retinae, voltage-dependent Na+ currents were significantly increased in comparison to cells from control donors. Thus, the expression of glial ion channels seems to be controlled by neuronal signals. This interaction may be involved in the pathogenesis of retinal gliosis which inevitably accompanies any degeneration of retinal neurons. In particular, Müller cell proliferation may be triggered by mechanisms requiring the activation of Ca(2+)-dependent K+ channels. Ca(2+)-dependent K+ currents are easily elicitable in Müller cells from degenerating retinae and can be blocked by 1 mM TEA (tetraethylammonium). In purified Müller cell cultures, the application of 1 mM TEA greatly reduces the proliferative activity of the cells. These data clearly show that Müller cells are altered in cases of neuronal degeneration and may be crucially involved in pathogenetic mechanisms of the retina.  相似文献   

5.
We observed the three dimensional structure of cellular aggregates formed from chick retinal cells in a floating culture system for 2 months. The aggregated cells partially mimicked the structure of the retina and showed differentiation of photoreceptor cells and Müller cells with numerous synapses. Immunohistochemical studies showed the number of anti-rhodopsin positive cells increasing over time. In the long-term culture, increasing anti-crystalline positive cells appeared late in the culture, indicative of differentiation of lens epithelial cells. Nerve, epidermal, and basic fibroblast growth factors, and co-culture with retinal pigment epithelial cells stimulated to some degree the growth of dendrites in retinal cellular aggregates. Epidermal growth factor, in particular, promoted the production of rhodopsin in photoreceptor cells. Retinal cellular aggregates in a floating culture system could be used to examine the effect of various factors on differentiation of the neuroretina.  相似文献   

6.
In cases of retinal light damage, glaucoma, or senile macula degeneration, the loss of retinal neurons is thought to cause alterations of glial cells. We performed immunocytochemical studies on retinae of (i) healthy rats and human donors, (ii) rats exposed to enhanced illumination for 24 months, a procedure which leads to complete loss of photoreceptor cells, (iii) a human donor who had suffered from senile macula (photoreceptor cell) degeneration, and (iv) human donors who had suffered from glaucoma, known to be accompanied by a loss of ganglion cells and other retinal neurons. Furthermore, Müller cells were enzymatically isolated from human glaucomatous retinae. All preparations were subjected to immunocytochemistry for CD44 antigen and Apolipoprotein E (ApoE). In normal rat and human retinae, CD44 immunoreactivity was observed in the microvillous sclerad processes of Müller cells: in human retinae, perivascular (astro-)glial cell processes were also CD44 immunopositive. ApoE immunoreactivity was only found in some perivascular (astro-)glial cell processes of human retinae. Both rat and human Müller cells respond to photoreceptor cell damage by increased, and ectopic, expression of the CD44 antigen. Increased ApoE immunoreactivity was found in Müller cells from degenerative human retinae, but rarely in light-damaged rat retinae. It is concluded that degeneration-related reorganization involves enhanced expression of the glial cell adhesion molecule CD44 as well as elevated activity of the glial lipid transport molecule ApoE.  相似文献   

7.
The presence of fatty acid-binding protein (FABP) in the embryonic chick retina may be linked to the demand for polyunsaturated fatty acids in this developing neural tissue. There is a decline in the overall level of FABP as the retina matures, suggesting a role for FABP in cellular differentiation. However, this pattern is not present in the chick brain, indicating a unique function for FABP in the retina. Immunohistochemical staining of paraffin sections of chick retina from embryonic day 21 revealed immunopositive photoreceptor inner segments, outer nuclear layer, 'radial processes' in the inner nuclear layer, a subpopulation of cells in the ganglion cell layer, and inner limiting membrane. This pattern suggested that FABP positive cells were photoreceptors, Müller (glial) cells, and possibly ganglion cells. Staining of sections for glutamine synthetase, an enzyme specific for Müller cells, was similar but not identical to the pattern observed with FABP; thus identification of these cells as FABP-positive was not conclusive. However, in retinal cells dissociated from day E14 embryos and cultured for one week, staining with FABP was more intense in the neurons than in the 'flat' cells (presumed to be derived from the Müller cells). Retinal FABP thus appears to be localized predominantly in neurons, and may serve to sequester fatty acids in preparation for neurite outgrowth as the retinal cells differentiate.  相似文献   

8.
We produced the monoclonal antibody RT10F7, characterized its antigenic specificity and expression in the adult and developing retina, in cultured retinal cells and in other parts of the central nervous system. In metabolically-labelled retinal cultures RT10F7 immunoprecipitated a protein of approximately 36,000 mol. wt. In the adult, RT10F7 stained endfeet of Müller cells in the ganglion cell layer, four horizontal bands in the inner plexiform layer, and radial fibres in the outer plexiform layer which terminated at the outer limiting membrane. In the inner nuclear layer, most somata were underlined by Müller processes that wrapped around them, but some cell bodies were immunoreactive for RT10F7 in the cytoplasm. During development, postnatal day 21 was the first age at which the adult pattern of immunoreactivity was present, although a fourth band in the inner plexiform layer was less clear than for the adult. By 14 and eight days after birth, the pattern of RT10F7 immunoreactivity approximated that of the adult; however, only three bands and one band were present, respectively, in the inner plexiform layer. At earlier ages, postnatal days 4, 1 and embryonic ages 19 and 15, the monoclonal antibody stained Müller cell endfeet and radial fibres, from the inner plexiform layer through the neuroblastic layer to the outer limiting membrane. At these ages, the immunoreactivity was more prominent at the level of Müller cell endfeet. The monoclonal antibody stained glia in preparations of dissociated retinal cells maintained in culture but not astrocytes or oligodendrocytes from optic nerve cultures. In brain sections, tanycytes exhibited RT10F7 immunoreactivity. The monoclonal antibody RT10F7 recognized a specific cell type in the retina, the Müller cell. In the adult and developing retina, RT10F7 recognized an antigen that is present primarily in Müller cell processes. This feature allowed us to follow the maturation of the Müller cell and correlate it with developmental events in the retina. RT10F7 is a specific marker for Müller cells in vivo and in vitro and may be useful for studies of function of Müller cells after ablation or after injuries that are known to activate Müller cells.  相似文献   

9.
BACKGROUND: Although the choroidal neovascularization (CNV) is a common pathologic feature of a number of different eye diseases, its pathological mechanisms have not been fully elucidated. We investigated the expression of vascular endothelial growth factor (VEGF) in CNV using an experimental primate model. METHOD: CNV was induced by intense laser photocoagulation in four monkey eyes. Single eyes were enucleated at 1, 3, 7 or 14 days after photocoagulation and examined immunohistochemically for VEGF, macrophage antigen, von Willebrand factor and glial fibrillary acidic protein (GFAP). Expression of VEGF mRNA was examined by in situ hybridization. RESULTS: One day after photocoagulation, the normal structure of the outer portion of the retina and the inner portion of the choroid was destroyed. Three days after photocoagulation, choroidal vascular endothelial cells migrated into the subretinal space through the defect in Bruch's membrane. Increased expression of VEGF was detected in the accumulating macrophages, migrating retinal pigment epithelial (RPE) cells and Müller cells. Maximal expression of VEGF was observed between 3 and 7 days after wounding, and many newly formed vessels extended into the subretinal space 7-14 days after photocoagulation. CONCLUSION: VEGF derived from RPE cells, macrophages and Müller cells may play a role in the formation of CNV.  相似文献   

10.
In retinal light damage, degeneration of photoreceptors results in alterations of glial (Müller) cells. In particular, Müller cells show signs of gliosis such as thickening of their stem processes, and expression of glial fibrillary acidic protein (GFAP) which is normally not detectable by immunocytochemistry. We were interested in a quantification of these morphological alterations, and in possible effects of an application of free radical scavengers (Ginkgobiloba extract EGb 761). For this purpose, we studied Müller cells in retinae of albino rats exposed to enhanced illumination for 24 months, a procedure which causes a complete loss of photoreceptor cells. The cells were labeled by (i) bulk filling with the fluorescent dye, Procion yellow, and by (ii) immunocytochemical demonstration of vimentin and GFAP. One group of rats was fed daily with EGb 761 during the last 8 months of life when the remaining photoreceptors (about 50%) died. The retinae were compared with retinae from 3 months-old albino rats, serving as normal young controls, and with retinae from 24 month-old pigment rats, representing normal aging processes. As age-related changes of the ultrastructure of glial cell (astrocytic) nuclei have been described in the literature, the organization of Müller cell nuclei was also studied by an argyrophilic stain, and by electron microscopy. We found that in the thin light-damaged retinae, Müller cells were shorter but thicker than in age-matched control retinae. The volumes of their vitread stem processes were almost unchanged. Müller cells were GFAP-immunoreactive in the light-damaged retinae but not in the controls. The application of EGb 761 prevented the expression by Müller cells of (detectable levels of) GFAP. By contrast, in retinae from EGb 761-treated animals the volumes of the vitread stem processes were significantly increased in comparison to untreated animals. The number of nuclear organization regions was significantly enhanced in Müller cell nuclei from light-damaged untreated albino rats, as compared with the young controls. Application of EGb 761 prevented much of this increase. Thus, exogeneous free radical scavengers do not prevent the occurrence of an reactive hypertrophy but inhibit the expression of "pathological marker molecules", and the (accompanying) signs of enhanced nuclear activity.  相似文献   

11.
The mature vertebrate retina contains seven major cell types that develop from an apparently homogenous population of precursor cells. Clonal analyses have suggested that environmental influences play a major role in specifying retinal cell identity. Fibroblast growth factor-2 is present in the developing retina and regulates the survival, proliferation and differentiation of developing retinal cells in culture. Here we have tested whether fibroblast growth factor receptor signaling biases retinal cell fate decisions in vivo. Fibroblast growth factor receptors were inhibited in retinal precursors in Xenopus embryos by expressing a dominant negative form of the receptor, XFD. Dorsal animal blastomeres that give rise to the retina were injected with cDNA expression constructs for XFD and a control non-functional mutant receptor, D48, and the cell fates of transgene-expressing cells in the mature retina determined. Fibroblast growth factor receptor blockade results in almost a 50% loss of photoreceptors and amacrine cells, and a concurrent 3.5-fold increase in Müller glia, suggesting a shift towards a Müller cell fate in the absence of a fibroblast growth factor receptor signal. Inhibition of non-fibroblast-growth-factor-mediated receptor signaling with a third mutant receptor, HAVO, alters cell fate in an opposite manner. These results suggest that it is the balance of fibroblast growth factor and non-fibroblast growth factor ligand signals that influences retinal cell genesis.  相似文献   

12.
The distribution of mitochondria within retinal glial (Müller) cells and neurons was studied by electron microscopy, by confocal microscopy of a mitochondrial dye and by immunocytochemical demonstration of the mitochondrial enzyme GABA transaminase (GABA-T). We studied sections and enzymatically dissociated cells from adult vascularized (human, pig and rat) and avascular or pseudangiotic (guinea-pig and rabbit) mammalian retinae. The following main observations were made. (1) Müller cells in adult euangiotic (totally vascularized) retinae contain mitochondria throughout their length. (2) Müller cells from the periphery of avascular retinae display mitochondria only within the sclerad-most end of Müller cell processes. (3) Müller cells from the vascularized retinal rim around the optic nerve head in guinea-pigs contain mitochondria throughout their length. (4) Müller cells from the peripapillar myelinated region ('medullary rays') of the pseudangiotic rabbit retina contain mitochondria up to their soma. In living dissociated Müller cells from guinea-pig retina, there was no indication of low intracellular pH where the mitochondria were clustered. These data support the hypothesis that Müller cells display mitochondria only at locations of their cytoplasm where the local O2 pressure (pO2) exceeds a certain threshold. In contrast, retinal ganglion cells of guinea-pig and rabbit retinae display many mitochondria although the local pO2 in the inner (vitread) retinal layers has been reported to be extremely low. It is probable that the alignment of mitochondria and the expression of mitochondrial enzymes are regulated by different mechanisms in various types of retinal neurons and glial cells.  相似文献   

13.
Gap junctional communication between glial cells is thought to play a role in K+ spatial buffering, in the propagation of inter-astrocytic Ca2+ waves, and in glial-neuronal signaling. In the present study, we characterize dye coupling between astrocytes, and between astrocytes and Müller cells, in the isolated rat retina. Whole-cell patch recordings were obtained from retinal astrocytes and Müller cells and the cells filled with Lucifer Yellow and neurobiotin. Spread of Lucifer Yellow to two to ten neighboring astrocytes occurred in 90% of the astrocyte recordings. After fixation and incubation of the retina with fluorescent conjugated streptavidin, neurobiotin was seen to label clusters of 13-88 astrocytes, as well as > 100 Müller cells. In contrast, when Müller cells were filled with Lucifer Yellow and neurobiotin, both tracers were confined solely to the recorded Müller cell. The uncoupling agents octanol, halothane, and doxyl-stearic acid were tested for their ability to uncouple retinal glia in situ. All three agents eliminated the visible spread of Lucifer Yellow from the injected astrocyte and the spread of neurobiotin into Müller cells. However, only doxyl-stearic acid combined with octanol eliminated the spread of neurobiotin between astrocytes. These results demonstrate that astrocytes in the rat retina are coupled to each other and to Müller cells. The astrocyte-to-Müller cell coupling is asymmetric, allowing transfer of the tracer in the forward direction only. In addition, astrocyte-to-Müller cell coupling is more sensitive to the uncoupling agents tested than is astrocyte-to-astrocyte coupling.  相似文献   

14.
Müller cells are astrocyte-like radial glia cells which are formed exclusively in the retina. Here we present evidence that Müller cells are crucially involved in the development of the retina's architecture and circuitry. There is increasing evidence that Müller cells are present from the very early beginning of retinogenesis. We postulate the "gradual maturation hypothesis of Müller cells". According to this hypothesis, Müller cells are continuously generated by a gradual transition of neuroepithelial stem cells into mature Müller cells. This process may be partly reversible. Müller cells, or their immature precursors, are able to subserve different functions. They are primary candidates for stabilizing the complex retinal architecture and for providing an orientation scaffold. Thereby, they introduce a reference system for the migration and correct allocation of neurons. Moreover, they may provide spatial information and microenvironmental cues for differentiating neurons, and may also be important for the segregation of cell and fibre layers. Additionally, they seem to be involved in the guidance of axonal fibres both in radial and in lateral directions, as they are involved in the support and stabilization of synapses.  相似文献   

15.
In this study, we demonstrate that: (i) injection of an adenovirus (Ad) vector containing the brain-derived neurotrophic factor (BDNF) gene (Ad.BDNF) into the vitreous chamber of adult rats results in selective transgene expression by Müller cells; (ii) in vitro, Müller cells infected with Ad.BDNF secrete BDNF that enhances neuronal survival; (iii) in vivo, Ad-mediated expression of functional BDNF by Müller cells, temporarily extends the survival of axotomized retinal ganglion cells (RGCs); 16 days after axotomy, injured retinas treated with Ad.BDNF showed a 4.5-fold increase in surviving RGCs compared with control retinas; (iv) the transient expression of the BDNF transgene, which lasted approximately 10 days, can be prolonged with immunosuppression for at least 30 days, and such Ad-mediated BDNF remains biologically active, (v) persistent expression of BDNF by infected Müller cells does not further enhance the survival of injured RGCs, indicating that the effect of this neurotrophin on RGC survival is limited by changes induced by the lesion within 10-16 days after optic nerve transection rather than the availability of BDNF. Thus, Ad-transduced Müller cells are a novel pathway for sustained delivery of BDNF to acutely-injured RGCs. Because these cells span the entire thickness of the retina, Ad-mediated gene delivery to Müller cells may also be useful to influence photoreceptors and other retinal neurons.  相似文献   

16.
Photoreceptors need the support of pigment epithelial (PE) and Müller glial cells in order to maintain visual sensitivity and neurotransmitter resynthesis. In rod outer segments (ROS), all-trans-retinal is transformed to all-trans-retinol by retinol dehydrogenase using NADPH. NADPH is restored in ROS by the pentose phosphate pathway utilizing high amounts of glucose supplied by choriocapillaries. The retinal formed is transported to PE cells where regeneration of 11-cis-retinal occurs. Müller cells take up and metabolize glucose predominantly to lactate which is massively released into the extracellular space (ES). Lactate is taken up by photoreceptors, where it is transformed to pyruvate which, in turn, enters the Krebs cycle in mitochondria of the inner segment. Stimulation of neurotransmitter release by darkness induces 130% rise in the amount of glutamate released into ES. Glutamate is transported into Müller cells where it is predominantly transformed to glutamine. Stimulation of photoreceptors induces an eightfold increase in glutamine formation. It appears, therefore, that there is a signaling function in the transfer of amino acids from Müller cells to photoreceptors. Work on the model-system of the honeybee retina demonstrated that photoreceptors release NH4+ and glutamate in a stimulus-dependent manner which, in turn, contribute to the biosynthesis of alanine in glia. Alanine released into the extracellular space is taken up and used by photoreceptors. Glial cells take glutamate by high-affinity transporters. This uptake induces a transient change in glial cell metabolism. The transformation of glutamate to glutamine is possibly also controlled by the uptake of NH4+ which directly affects cellular metabolism.  相似文献   

17.
PURPOSE: To determine the sequence of cellular changes associated with a new rabbit model of subretinal neovascularization (SRN) induced by subretinal injection of basic fibroblast growth factor (bFGF)-impregnated microspheres. METHODS: bFGF-impregnated gelatin microspheres, prepared by forming a polyion complex between gelatin and bFGF, were subretinally implanted into rabbit eyes. The eyes were studied by immunochemistry at 3 days to 8 weeks after implantation. Antibodies to CD4, CD8, cytokeratin, CD31, glial fibrillary acidic protein (GFAP), and RAM11 were used. RESULTS: Cytokeratin-positive retinal pigment epithelial (RPE) cells appeared on day 3 and continued to increase in number in the subretinal space throughout the growth of the SRN membrane, becoming the predominant cell type. Macrophages (RAM11-positive) appeared early, but most disappeared within 7 days. GFAP-positive Müller cells were evident early in the retina but migrated into the subretinal space after 7 days; the gliotic adhesion they formed between the retina and the SRN membrane was prominent at 8 weeks. CD31-positive endothelial cells were first evident at 14 days and formed neovascular channels that were still present for up to 8 weeks. CD4- and CD8-positive lymphocytes appeared in the early stages but were few in number. CONCLUSIONS: SRN membranes are primarily composed of RPE cells and vascular endothelial cells. The membrane adheres to the retina by a gliotic band. The cellular components involved in the membrane of this model resemble those found in SRN membranes removed from patients with age-related macular degeneration.  相似文献   

18.
PURPOSE: This study was conducted to detect the presence of muscarinic or nicotinic receptors in cultured retinal neurons and Müller cells. METHODS: Pure Müller cell cultures and cocultures of retinal neurons and Müller cells were used; the former, obtained from adult rabbit retinas, and the latter, retinal neurons from neonatal rats, were cocultured with Müller cells. Intracellular calcium ion concentration ([Ca2+]i) following the administration of acetylcholine, a cholinesterase inhibitor (trichlorfon), nicotine or muscarinic agonist with or without a receptor antagonist was monitored using the calcium ion indicator, fura-2. RESULTS: Acetylcholine and trichlorfon induced rapid increase in [Ca2+]i in half of either cell type. Trichlorfon induced positive response in coculture but not in the pure Müller cell cultures. This positive response was blocked only partially in the presence of atropine. Approximately 30-40% of neurons responded to nicotine at 5 microM, which was significantly blocked by alpha-bungarotoxin at 50 nM. No response to nicotine could be detected in Müller cells. Approximately 50% of neurons responded to muscarine at 50 microM, but 500 microM was required for the formation of calcium transients in 50% of Müller cells. The muscarine inducement of rapid increase in [Ca2+]i was blocked by atropine. The agonist of M1 (a muscarinic receptor subtype), McN-A-343, at 0.5 microM induced the most significant and rapid increase in [Ca2+]i both in neurons and Müller cells. McN-A-343 administration at 0.05 microM induced positive response in half the neurons, but only in approximately 10% of Müller cells. Such positive response was not observed following preincubation with the M1 antagonist, pirenzepine, at 50 microM. CONCLUSIONS: Cocultured retinal neurons enhance the release of acetylcholine following anticholinesterase administration, and approximately half the neurons were found to possess muscarinic and nicotinic receptors. However, Müller cells appeared to possess only the less sensitive muscarinic receptor. Muscarinic receptor subtypes on either type of cell contained at least M1.  相似文献   

19.
PURPOSE: To assess the ability of retinal Müller cells to generate tractional forces during dedifferentiation in culture and to assess their responsiveness to contraction-stimulating growth factors. METHODS: Müller cells were isolated from papain-DNase-digested porcine retina. The identity of the isolated cells was confirmed by immunodetection of carbonic anhydrase II (CA-II), cellular retinaldehyde-binding protein (CRALBP), glial fibrillary acidic protein (GFAP), vimentin, and alpha smooth muscle actin (alpha SMA). Tractional force generation was assessed as a function of Müller cell contraction of collagenous extracellular matrices in vitro. The effects of potential promoters were assessed by addition directly to culture medium. The contributions of specific promoting to the contraction-promoting activity in serum were assessed by adding neutralizing antibodies and measuring loss of stimulatory activity. RESULTS: Freshly isolated Müller cells did not generate substantial matrix contraction. However, this activity increased 150-fold within 12 days in culture and continued to increase during the next 21 days. Development of the capacity for extracellular matrix contraction coincided with the acquisition of immunodetectable alpha SMA and loss of GFAP. Matrix contraction by Müller cells was stimulated in a dose-dependent fashion by human serum, platelet-derived growth factor (PDGF), and insulin-like growth factor-I (IGF-I). Müller cells were not stimulated by transforming growth factor beta 1 (TGF beta 1), transforming growth factor beta 2 (TGF beta 2), or endothelin-1 (E1). Neutralizing antibodies against PDGF and IGF-I reduced the activity in human serum by 37% and 58%, respectively, and 87% when added together. CONCLUSIONS: Porcine Müller cells in culture acquire the ability to contract extracellular matrices and thus generate tractional forces. Acquisition of this activity coincides with alpha SMA expression and loss of GFAP. Further, this activity is dependent on the presence of exogenous promoters, including PDGF or IGF-I.  相似文献   

20.
Glutamate is the most prominent excitatory neurotransmitter in the retina and brain. It has become clear that the physiology of many glial cells, including retinal Müller cells, is modified by a host of neurotransmitters, including glutamate. The experiments presented here demonstrate that Müller cells isolated from the tiger salamander retina have metabotropic glutamate receptors that, when activated, lead to the release of calcium ions (Ca2+) from intracellular stores. The Ca2+-sensitive fluorescent dye, Fura-2, and video imaging microscopy were used to monitor changes in cytosolic calcium ion concentration ([Ca2+]i) evoked by glutamate (30-50 microM), (1S,3R)-ACPD (50-200 microM), quisqualate (10-50 microM), and L-AP4 (5-100 microM). Bath application of each of these metabotropic receptor agonists in the absence of extracellular Ca2+ resulted in an increase in [Ca2+]i that often began in the distal end of the cell and occurred later in the endfoot. This wavelike increase in [Ca2+]i is reminiscent of the Ca2+ waves evoked in these cells by other Ca2+ releasing agents such as ryanodine and caffeine. Extracellular application ofATP also evoked increases in [Ca2+] in Müller cells. The presence on Müller cells of receptors for retinal neurotransmitters, such as glutamate and ATP, demonstrates that these glial cells can respond to changes in the retinal extracellular environment and hence neuronal activity. Since Müller cells span almost all layers of the retina, they are likely to be exposed to most retinal neurotransmitters. The Ca2+ waves evoked in Müller cells by neurotransmitters could represent a form of signaling from the outer retinal layers to the inner ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号