首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
In this work, the evaporation phenomena of 20–45 picoliter water droplet (i.e. 50–65 μm diameter) on heated substrates with different thermal conductivity are studied experimentally. The effect of thermal conductivity of substrates and inter-distance between jetted droplets on the evaporation is investigated. In addition, the model to predict evaporation rate of the picoliter droplet on different substrates at a heated condition is developed using approximations for picoliter droplet. This paper was presented at the 7th JSME-KSME Thermal and Fluids Engineering Conference, Sapporo, Japan, October 2008. Taewoong Lim received his B.S and M.S. degree in mechanical engineering from Korea University, Seoul, Korea in 2007 and 2009, respectively. His thesis topic was the evaporation of inkjet printed pico-liter droplet and He has been working at Hyundai Motor Company. Jaeik Jeong received his B.S. degree in mechanical engineering from Korea University in 2008. He is currently a M.S. candidate in mechanical engineering at Korea University. Jaewon Chung received his B.S. and M.S. degrees in mechanical engineering from Yonsei University, Seoul, Korea in 1995 and 1997, respectively and Ph.D. degree from University of California, Berkley in 2002. He was postdoctoral associate in Engineering System Research Center at University of California, Berkley in 2002–2004 and had worked in the Center of Micro and Nano Technology at Lawrence Livermore National Laboratory as a visiting collaborator. He is a currently an associate professor at the Department of Mechanical Engineering at Korea University in Seoul, Korea. His research interests include direct writing methods including drop on demand inkjet printing, electrohydrodynamic printing and laser material processing for printing electronics. Jin Taek Chung received his B.S. and M.S. degrees in mechanical engineering from Korea University, Seoul, Korea in 1983 and 1985, respectively and Ph. D. degree from University of Minnesota, U.S.A. in 1992. He is a currently a professor at the Department of Mechanical Engineering at Korea University in Seoul, Korea. His research interests are heat transfer and 3-D flow in gas turbines and thermal management of electronic devices.  相似文献   

2.
An optimization of rapid thermal processing (RTP) was conducted to obtain uniform temperature distribution on a wafer surface by using linear programming and radiative heat transfer modeling. The results show that two heating lamp zones are needed to maintain uniform wafer temperature and the optimal lamp positions are unique for a given geometry and not affected by wafer temperatures. The radii of heating lamps, which were obtained by optimization, are 45 mm and 108 mm. The emissivity and temperature of the chamber wall do not significantly affect the optimal condition. With obtained optimum geometry of the RTP chamber and lamp positions, the wafer surface temperatures were calculated. The uniformity allowance of the wafer surface is less than ±1°C when the mean temperature of the wafer surface is 1000°C. This paper was recommended for publication in revised form by Associate Editor Dongsik Kim Hyuck-Keun Oh received the B.S. and M.S degrees in Mechanical & Aerospace Engineering from Seoul National University in 2000 and 2002, respectively. He had experienced mechanical and electrical engineering in the Samsung SDI Corporation on various display devices between 2002 and 2007. He is now pursuing the Ph.D degree in Mechanical & Aerospace engineering at Seoul National University, Korea. His research interests are heat transfer and thermal management with a focus on power generation and energy efficiency. Sae Byul Kang received the B.S degree in Mechanical engineering from Korea University in 1996. He then went on to receive his M.S and Ph.D. degrees from Seoul National University in 1998 and 2003, respectively. Dr. Kang is currently a senior researcher at the Korea Institute of Energy Research in Daejeon, Korea. Dr. Kang’s research interests are development of industrial boiler and burner for bio-mass. Young Ki Choi received the B.S and M.S degrees in Mechanical engineering from Seoul National University in 1978 and 1980, respectively and the Ph.D. de-gree in mechanical engineering from the University of California at Berkeley in 1986. He is currently a professor at the School of Mechanical Engineering, Chung Ang University, Korea. His research interests are in the area of micro/nanoscale energy conversion and transport, computational fluid dynamics, and molecular dynamics simulations. Joon Sik Lee received the B.S and M.S degrees in Mechanical engineering from Seoul National University in 1976 and 1980, respectively and the Ph.D. degree in mechanical engineering from the University of California at Berkeley in 1985. He is currently a professor at the School of Mechanical & Aerospace Engineering, Seoul National University, Korea. He is also the director of Micro Thermal System Research Center. His research interests are in the area of micro/nanoscale energy conversion and transport, thermal management for power generation and energy efficiency, and various convective heat transport phenomena such as pool boiling and nanofluid.  相似文献   

3.
The demand for the use of 3D CAD data over the Internet environment has been increasing. However, CAD data size has deteriorated the communication effectiveness of 3D CAD files. Good design methodology of a lightweight CAD file is required for rapid transmission on the distributed network environment. In this paper, a file translation system is constructed to produce lightweight CAD files from commercial CAD systems by using InterOp and APIs of the ACIS kernel. Using B-rep models and mesh data extracted from the CAD native files, the lightweight CAD files with topological information are constructed as binary files. As the lightweight CAD files retain topological and geometric information, they are applicable to dimensional verification, digital mock-ups, and visualization of CAD files through a CAD viewer. The effectiveness of the proposed lightweight CAD files is confirmed through various case studies on the CAD viewer. This paper was recommended for publication in revised form by Associate Editor Jooho Choi In-Ho Song received B.S. and M.S. degrees in mechanical engi-neering from Kunsan National University, and Ph.D. degree in mechanical engineering from Hanyang University, Seoul, Korea in 2007. From 2002 to 2007, he served as a team manager to develop CAD and PLM systems in CIES in Korea. He is currently a post-doc researcher in the mechanical engineering department in Hanyang University. As he had developed a lightweight CAD viewing kernel for CAD/CAM systems, he received a New Technology Certificate from Korean Government (MOCIE) in 2005. He also received several prizes from the Korean Society of CAD/CAM Engineers in 2003 and 2004. He specializes in geometric modeling, CAD kernels, product design and digital manufacturing systems. Sung-Chong Chung received the B.S. degree with honors in mechanical engineering from Hanyang University, Seoul, Korea, and the M.S. and Ph. D. in mechanical engineering from KAIST, Seoul, Korea in 1979, 1981 and 1987, respectively. Since 1983, he has been a professor in the School of Mechanical Engineering, Hanyang University, Seoul, Korea. In 2000, he received the outstanding paper award from the North American Manufacturing Research Institution of the Society of Manufacturing Engineers. He received the academic research and software development awards from the Korean Society of Mechanical Engineers and the Korean Society of CAD/CAM Engineers in 2003 and 2004, respectively. His research interests include CAD/CAM, control, mechatronics, manufacturing and precision engineering.  相似文献   

4.
Nature-inspired flapping foils have attracted interest for their high thrust efficiency, but the large motions of their boundaries need to be considered. It is challenging to develop robust, efficient grid deformation algorithms appropriate for the large motions in three dimensions. In this paper, a volume grid deformation code is developed based on finite macro-element and transfinite interpolation, which successfully interfaces to a structured multi-block Navier-Stokes code. A suitable condition that generates the macro-elements with efficiency and improves the robustness of grid regularity is presented as well. As demonstrated by an airfoil with various motions related to flapping, the numerical results of aerodynamic forces by the developed method are shown to be in good agreement with those of an experimental data or a previous numerical solution. This paper was recommended for publication in revised form by Associate Editor Do Hyung Lee Jin Hwan Ko received his B.S. degree in Mechanical Engineering from KAIST, Korea, in 1995. He then received his M.S. and Ph.D. degrees from KAIST in 1997 and 2004, respectively. Dr. Ko is currently a research professor at the School of Mechanical and Aerospace Engineering at Seoul National University in Seoul, Korea. His research interests include fluid-structure interaction analysis, structural dynamics of a micro-scale resonator, and model order reduction. Soo Hyung Park received his B.S. degree in Aerospace Engineering from KAIST, Korea, in 1996. He then received his M.S. and Ph.D. degrees from KAIST in 1999 and 2003, respectively. Prof. Park is currently an assistant professor at the Dept. of Aerospace Information Engineering at Konkuk University in Seoul, Korea. His research interests include computational fluid dynamics, fluid-structure interaction analysis, rotorcraft aerodynamics, and turbulence modeling.  相似文献   

5.
This paper presents a combined dual stage-based mechanical and image-based stabilization scheme for a three-axis image-tracking sight system. To improve the stabilization and tracking accuracy, a secondary stage actuated by a pair of electro-magnets is mounted on a conventional elevation gimbal. For the remaining roll axis stabilization, an electronic digital- image stabilization technique is introduced to estimate and correct roll motions. Experimental results are given to demonstrate the effectiveness of the proposed stabilization system and the image-stabilization scheme. This paper was recommended for publication in revised form by Associate Editor Dong Hwan Kim Joon Lyou received a B.S. degree in Electronics Engineering from Seoul National University in 1978. He then went on to receive M.S. and Ph.D. degrees from KAIST in 1980 and 1984, respectively. Dr. Lyou is currently a professor of the Department of Electronics Engineering at Chungnam National University in Daejeon, Korea. His research interests include industrial control and sensor signal processing, IT based robotics, and navigation systems. MinSig Kang received a B.S. degree from the Department of Mechanical Engineering of Seoul National University in 1980. He then went on to receive M.S. and Ph.D. degrees from KAIST in 1983 and 1987, respectively. He worked for the Agency for Defence Development during 1987–1998. Dr. Kang is currently a professor of the Department of Mechanical and Automotive Engineering at Kyungwon University in Sungnam, Korea. His research interests include dynamic systems measurement and control, industrial robotics, and manufacturing systems. HwyKuen Kwak received a B.S. degree in Electronics Engineering from Chungnam National University in 2005. He is currently working on his M.S. and Ph.D. course at Chungnam National University in Daejeon, Korea. His research areas are image signal processing, sensors and digital control systems. YoungJun Choi received a B.S. and M.S. degree in Mechanical Engineering from Kyungwon University in 2004 and 2006. He is currently a researcher for the Agency for Defence Development in Daejeon, Korea. His research fields are dynamic systems measurement and control, satellite systems, navigation systems and smart materials.  相似文献   

6.
The interfacial reaction between Cu pad coated with Au/Ni and solder bump of flip chip package, using Sn97.5wt.%-Ag2.5wt%, was studied under thermal shock stress. All joints were subjected to thermal shock test with −65°C/+150°C temperature range. For the Sn-2.5Ag solder, a scallop-like (Cu,Ni)6Sn5 intermetallic compound was formed in the solder matrix after 20 cycles of thermal shock. (Cu,Ni)6Sn5 was detached from the interface as (Ni,Cu)3Sn4 grew underneath the (Cu,Ni)6Sn5 IMC(Intermetallic Compound), whereas the elements of Sn, Ni and Cu were moved by interdiffusion at the interface between solder alloy and Cu pad. The composition of the IMCs in the solder joints and elemental distribution across the joint interfaces were quantitatively measured with EPMA (electron probe micro analysis). Finally, it was found that the crack initiation point and its propagation path could be influenced by the thermal shock conditions, two underfills, and their properties. This paper was recommended for publication in revised form by Associate Editor Chongdu Cho Kyoung Chun Yang received his B.E. and M.E. degrees in Mechanical Engineering from Chung-Ang University, Korea, in 2006 and 2008, respectively. His research interests include reliability in electronic packages, micro joints evaluation, advanced IC packaging/assembly technologies. Seong Hyuk Lee received his Ph. D. degree in Mechanical Engineering from Chung-Ang University, Korea, in 1999. Dr. Lee is currently an Associate Professor at the School of Mechanical Engineering of Chung-Ang University in Seoul, Korea. His research interests are mainly in the micro/nanoscale energy conversion and transport, the computational physics associated with thin film optics, and thermal and fluid engineering. Jong-Min Kim received his B.E. and M.E. degrees in Mechanical Engineering from Chung-Ang University, Korea, in 1997 and 1999, respectively. He then received his Ph.D. degree in Manufacturing Science from Osaka University, Japan, in 2002. Dr. Kim is currently an Associate Professor at the School of Mechanical Engineering at Chung-Ang University in Seoul, Korea. He has been mainly engaged in the fields of the interconnection & packaging technology in microelectronics and the intelligent assembly process in micro/nano systems. Young Ki Choi received his B.E. and M.E. degrees in Mechanical Engineering from Seoul National University, Korea, in 1978 and 1980, respectively. He then received his Ph.D. degree in Manufacturing Science from Univ. of California, Berkeley, U.S.A., in 1986. Dr. Choi is currently a Professor at the School of Mechanical Engineering at Chung-Ang University in Seoul, Korea. He has been mainly engaged in the fields of the heat transfer in micro-nano systems and the numerical analysis of the heat transfer system. Dave F. Farson received B.S. and M.S. degrees in Welding Engineering and Ph.D. degree in Electrical Engineering from The Ohio State University in 1987. He worked at Westinghouse R&D and Applied Research Laboratory at Penn State University before returning Ohio State University in 1995, where he is currently an Associate Professor in the Department of Integrated Systems Engineering. He is a past-president and Fellow of the Laser Institute of America and was co-editor of its Handbook of Laser Materials Processing. He is also active in the American Welding Society. He does research in laser materials processes and materials joining for a range of applications including biomedical and electronics device fabrication. Young Eui Shin received his B.E.degree Mechanical Engineering from Chung-Ang University in Korea, and M.S and Ph.D degrees from Nihon Univ. and Osaka Univ. in 1985 and 1992 respectively. He worked as principal researcher in the Technical central lab of Daewoo Heavy industry from 1985 to 1988, and as a chief researcher in Technical Center of Samsung Electronics from 1992 to 1994. At present, he is a Professor at the School of Mechanical Engineering, Chung-Ang Univ., in Korea. He is also working as President, Korea Micro Joining Association. He has been mainly engaged in eco friendly materials application for micro system packaging and reliability evaluation for micro joints.  相似文献   

7.
Direct numerical simulation of multiphase flow on fixed Eulerian grid became increasingly popular due to its simplicity and robustness. Some of the well-known methods include VOF, Level Set, Phase field, and Front Tracking method. Lately, hybridization of above methods gets its attention to overcome the disadvantages pertaining to each method. One hybrid approach developed by the author is the Level Contour Reconstruction Method (LCRM) which combines characteristics of both Front Tracking and Level Set method. Many engineering problems also contain complex geometry as boundary condition and proper representation of grid structure plays very important role for the successful outcomes. In this paper, an algorithm for handling arbitrary geometry inside fixed Eulerian computational domain with multiphase flow has been presented. Interface reconstruction between liquid and vapor phase has been performed outside of arbitrary solid boundary explicitly along with dynamic contact angle model. Sharp interface technique using ghost fluid point extrapolation method has been utilized for correct implementation of no-slip boundary condition at the wall. This paper was presented at the 7th JSME-KSME Thermal and Fluids Engineering Conference, Sapporo, Japan, October 2008. Seungwon Shin received his B.S. and M.S. degree in Mechanical Engineering from Seoul National University, Korea, in 1995 and 1998, respectively. He then received his Ph.D. degree from Georgia Tech in 2002. Dr. Shin is currently a Professor at the School of Mechanical and System Design Engineering at Hongik University in Seoul, Korea. Dr. Shin’s research interests include computational fluid dynamics, multiphase flow, surface tension effect, phase change process.  相似文献   

8.
This paper presents a pressure output feedback control of turbo compressor surge using tip clearance actuation with a thrust magnetic bearing actuator. First, static and dynamic compressor models were obtained for a commercial turbocharger, and the surge point was found through local stability analysis. Then, the effect of tip clearance on the compressor pressure rise was derived, and Lyapunov analysis was used to establish a limit of stability with tip clearance modulation. After that, a linear quadratic (LQ) state feedback control was designed considering the limit established by the Lyapunov analysis. In addition, an extended Kalman filter (EKF) was designed to estimate the mass flow rate from the measured compressor pressure. Finally, the pressure output feedback controller was built by combining the LQ state feedback control and EKF. Control simulation proved the effectiveness of the output feedback controller. This paper was recommended for publication in revised form by Associate Editor Dong Hwan Kim Dr. Ahn earned Ph.D. from Seoul National University in 2001. He was a research associate of University of Virginia. He is currently an assistant professor of department of mechanical engineering at Soongsil University and serving as an editor of international journal of rotating machinery. His research interests are rotordynamics, control and mechatronics. Mr. Park is a junior research engineer in Doosan infracore. He received his master from Seoul National University. His research area is on dynamics and control of rotating machinery. Dr. Sanadgol is an assistant Professor of Physics and Engineering at Sweet Briar College. She earned her PhD in Mechanical and Aerospace Engineering with a focus in controls from the University of Virginia in 2006. Her research interests are in controlling flow instabilities in compressors and application of nonlinear control theories to mechatronics systems. Dr. Park received his PhD degree from the Seoul National University, Korea in 2007. He is currently director of research institute at KMB&SENSOR company. His research interests include the precision machine design, rotor dynamics, and magnetic actuators. Dr. Han received the Dipl.-Ing. and Dr.-Ing. in mechanical engineering from University of Karsruhe, Germany in 1975 and 1979, respectively. In 1982, he joined the school of mechanical and aerospace engineering, Seoul National University as an assistant professor. He is currently an honorary professor of mechanical engineering. His research interests are in machine element design, magnetic bearing, lubrication engineering and Bio-MEMS devices. Dr. Maslen is a Professor of Mechanical and Aerospace Engineering at the University of Virginia. He earned his Bachelor of Science in 1980 from Cornell University and his doctorate from the University of Virginia in 1991. His research focuses on application of automatic controls to electromechanical systems with a concentration in magnetic bearings.  相似文献   

9.
The spacer grid assembly, an interconnected array of slotted grid straps embossed with dimples and springs, is one of the main structural components of a pressurized light-water reactor (PWR). It takes the role of supporting the nuclear fuel rods which experience a severe expansion and contraction caused by harsh operational conditions such as an earthquake. The external load by an earthquake can be mainly represented as a lateral load, and the resistance to it is evaluated in terms of dynamic crush strengths. It has been reported that a dimple location in a space grid has an effect on this strength. In this paper, based on this fact, the effect of a dimple location in a 3×3 support grid on impact strength has been investigated as a preliminary parameter study for a full sized support grid. The optimal location of the dimple, about 3.5 mm from the tip of the strap, has been found and some design guidelines for a support grid such as reducing the spring length and the dimple gap have been provided. This paper was recommended for publication in revised form by Associate Editor Heoung-Jae Chun Keenam Song received his B.S. degree in the department of mechanical engineering from Seoul National University in 1980, then went on to receive his M.S. degree at KAIST in 1982. Since then he has served as a researcher, senior researcher, principal researcher, and project manager at Korea Atomic Energy Research Institute. Soobum Lee is a postdoctoral research associate in the University of Maryland, U.S. He received the B.S. degree in Mechanical Design and Production Engineering from Yonsei University, Seoul, Korea, in 1998, and the M.S. and Ph.D. degree in Mechanical Engineering from KAIST (Korea Advanced Institute of Science and Technology), Korea, in 2000. His main research interests include structural shape and topology optimization, energy harvester design, nuclear plant design for hydrogen production, robust design using Taguchi method, genetic algorithm, automobile part and system design. He received the best paper award from Korean Society of Mechanical Engineering in 2007.  相似文献   

10.
In HVAC system, the oil circulation is inevitable because the compressor requires the oil for lubrication and sealing. A small portion of the oil circulates with the refrigerant flow through the system components while most of the oil stays or goes back to the compressor. Because oil retention in refrigeration systems can affect system performance and compressor reliability, proper oil management is necessary in order to improve the compressor reliability and increase the overall efficiency of the system. This paper describes a numerical analysis of oil distribution in each component of the commercial air conditioning system including the suction line, discharge line and heat exchanger. In this study, system modeling was conducted for a compressor, discharge line, condenser, expansion valve, evaporator and suction line. Oil separation characteristics of the compressor were taken from the information provided by manufacturer. The working fluid in the system was a mixture of a R-410A refrigerant and PVE oil. When the oil mass fraction (OMF) was assumed, oil mass distribution in each component was obtained under various conditions. The total oil hold-up was also investigated, and the suction line contained the largest oil hold-up per unit length of all components. This paper was presented at the 7th JSME-KSME Thermal and Fluids Engineering Conference, Sapporo, Japan, October 2008. Min Soo Kim received his B.S., M.S., and Ph.D. degree at Seoul National University, Korea in 1985, 1987, and 1991, respectively. After Ph.D. degree, Prof. Kim worked at National Institute of Standards and Technology (NIST) in U.S.A. for about three years. He is currently a professor at the School of Mechanical and Aerospace Engineering of Seoul National University, Korea. Jong Won Choi received B.S. degree in Mechanical Engineering from Korea University in Seoul, Korea, in 2004, and then received M.S. degrees from Seoul National University in 2006. He is currently a student in Ph.D. course at the School of Mechanical and Aerospace Engineering of Seoul National University in Seoul, Korea. His research interests include refrigeration system, micro-fluidic devices, and PEM fuel cell as an alternative energy for next generation. Mo Se Kim received B.S. degree in Mechanical and Aerospace Engineering from Seoul National University in Seoul, Korea, in 2007. He is currently a student in M.S. course at the School of Mechanical and Aerospace Engineering of Seoul National University in Seoul, Korea. He had studied on the oil migration in the heat pump system, and now he studies on the refrigeration system using an ejector. Baik-Young Chung received his B.S., M.S., and Ph.D. degrees in Mechanical Engineering from Inha University, Korea in 1984, 1986, and 2001, respectively. He is currently a research fellow of HAC Research Center at LG Electronics. He is responsible for the commercial air conditioner group. Sai-Kee Oh received B.S. degree in Mechanical Engineering from Seoul National University, Korea in 1989, and then received M.S. and Ph.D. degrees from KAIST, Korea in 1991 and 1997, respectively. He is currently a principal research engineer of HAC Research Center at LG Electronics. He is responsible for the residential air conditioner group. Jeong-Seob Shin received B.S. degree in Machine Design and Production Engineering from Hanyang University, Korea in 1988, M.S. degree in Mechanical Engineering from KAIST, Korea in 1991, and Ph.D. degree in Mechanical Engineering from POSTECH, Korea in 2004. He has joined HAC Research Center at LG Electronics since 2006 as a principal research engineer.  相似文献   

11.
Effects of the bulk inlet velocity on the characteristics of dual-inlet side-dump flows are numerically investigated. Non-reacting subsonic turbulent flow is solved by a preconditioned Reynolds-averaged Navier-Stokes equation system with low-Reynolds number k − ɛ turbulence model. The numerical method is properly validated with measured velocity distributions in the head dome and the combustor. With substantial increase in the bulk inlet velocity, general profiles of essential primary and secondary flows normalized by the bulk inlet velocity are quantitatively invariant to the changes in the bulk inlet velocity. This paper was recommended for publication in revised form by Associate Editor Do Hyung Lee Seung-chai Jung received his B.S. degree in Mechanical Engineering from Yonsei University, Korea, in 2001. He then received his M.S. degree in Mechanical Engineering from Yonsei University, Korea, in 2005. Mr. Jung is currently a Ph. D. candidate at Yonsei University, where he is majoring in Mechanical Engineering. Mr. Jung’s research interests include propulsion system and particle-surface collision dynamics. Byung-Hoon Park received his B.S. degree in Mechanical Design and Production Engineering from Yonsei University in 2003. He is currently a Ph.D. candidate in Yonsei University in Seoul, Korea. His research interests include performance design of propulsion systems and nu-merical analysis of instability in multiphase turbulent reacting flow-fields. Hyun Ko received his B.S. degree in Aerospace Engineering from Chonbuk National University, Korea, in 1996. He then received his M.S. degree in Mechanical Design from Chonbuk National University, Korea, in 1998. In 2005, he obtained his Ph.D. degree from Yonsei University, where he majored in mechanical engineering. Dr. Ko is currently a Principal Research Engineer of the MicroFriend Co., Ltd. in Seoul, Korea. His research interests include propulsion related systems and computational fluid dynamics. Woong-sup Yoon received his B.S. degree in Mechanical Engineering from Yonsei University, Korea, in 1985. He then received his M.S. degree from University of Missouri-Rolla in 1989. In 1992, he obtained his Ph.D. degree from the University of Alabama in Huntsville, where he majored in mechanical and aerospace engineering. Dr. Yoon is currently a professor at the School of Mechanical Engineering at Yonsei University in Seoul, Korea. His research interests include propulsion system and particle-related environmental/ thermal engineering.  相似文献   

12.
This paper presents a novel method of optimizing particle-suspended microfluidic channels using genetic algorithms (GAs). The GAs can be used to generate an optimal microchannel design by varying its geometrical parameters. A heuristic simulation can be useful for simulating the emergent behaviors of particles resulting from their interaction with a virtual microchannel environment. At the same time, fitness evaluation enables us to direct evolutions towards an optimized microchannel design. Specifically, this technique can be used to demonstrate its feasibility by optimizing one commercialized product for clinical applications such as the microchannel-type imaging flow cytometry of human erythrocytes. The resulting channel design can also be fabricated and then compared to its counterpart. This result implies that this approach can be potentially beneficial for developing a complex microchannel design in a controlled manner. This paper was recommended for publication in revised form by Associate Editor Hong Hee Yoo Hyunwoo Bang was born in Korea on June 2, 1978. He received the B.S. degree in mechanical and aerospace engineering from Seoul National University, Seoul, Korea in 2001 and the Ph.D. degree in mechanical and aerospace engineering from Seoul National University in 2007. He did postdoctoral research at University of California Los Angeles, CA that involved the integration of functional biological components into engineered devices with Prof. Jacob J. Schmidt from April 2007 to August 2008. His current research interests include microfluidics based Lab-on-a-chip devices and their design optimization using artificial intelligence. Dong-Chul Han received the B.S. degree from the Department of Mechanical Engineering, Seoul National University, Seoul, Korea, in 1969, and the Dipl.-Ing. and Dr.-Ing. degrees from the Department of Mechanical Engineering, University of Karlsruhe, Karlsruhe, Germany, in 1975 and 1979, respectively. He also received the Habilitation from the Department of Mechanical Engineering, University of Karlsruhe. He had been a professor in the school of Mechanical and Aerospace Engineering at Seoul National University from 1982 to 2008. His research interests include active magnetic bearing systems, mechanical lubrication, Bio-MEMS (MicroElectroMechanical Systems) and nano-fabrication.  相似文献   

13.
A slot film cooling technique has been used to protect a combustor liner from hot combustion gas. This method has been developed for gas turbine combustors. A ramjet combustor exposed to high temperature can be protected properly with a multi-slot film cooling method. An experimental study has been conducted to investigate the change of the first slot angle under recirculation flow and the influence of wiggle strip within a slot, which affects the film cooling effectiveness. The first slot angle has been changed to understand the effect of the injection angle on the film cooling effectiveness in a recirculation zone. The distribution of dimensionless temperature was obtained by a thermocouple rake to investigate the wiggle strip effect, and the adiabatic film cooling effectiveness on downstream wall was measured by a thermochromic liquid crystal (TLC) method. At the first slot position, the film cooling effectiveness decreases significantly because of the effects of recirculation flow. The lip angle of the first slot affects slightly on the film cooling effectiveness. The wiggle strip reinforces the structure of slot and keeps the uniform open area of slot. However, it induces three dimensional flows and enhances the flow mixing between the main flow and the injected slot flow. Therefore, the wiggle strip decreases slightly the overall film cooling effectiveness. This paper was presented at the 7th JSME-KSME Thermal and Fluids Engineering Conference, Sapporo, Japan, October 2008. Kwanghoon Park received his M.S degree in Mechanical Engineering from Yonsei University, Seoul, Korea in 2007. He is currently working for an education of an officer as a drillmaster in Army Consolidated Logistics School. Kang Mo Yang joined the Republic of Korea Army in 2004. He is currently working towards the M.S. degree at the Department of Mechanical Engineering, Yonsei University. Keon Woo Lee received his M.S. degree in Mechanical Engineering from Yonsei University, Seoul, Korea in 2008. In 2008, he joined the Doosan heavy industries & Construction Co, LTD, where he is a member of the IGCC Business Team. Hyung Hee Cho received his PhD degree in Mechanical Engineering from University of Minnesota, Minneapolis, MN in 1992. In 1995, he joined the Department of Mechanical Engineering, Yonsei University, Seoul, Korea, where he is currently a full professor in the School of Mechanical Engineering. His research interests include heat transfer in turbomachineries, rocket/ramjet cooling as well as nanoscale heat transfer in thin films, and microfabricated thermal sensors. Hee Cheol Ham received his PhD degree in Mechanical Engineering from Yonsei University, Seoul, Korea in 2001. In 1984, he joined the Agency for Defense Development, Daejeon, Korea, where he is currently a Principal Researcher. Ki Young Hwang received his Ph.D. degree in Mechanical Engineering from Yonsei University, Seoul, Korea in 1994. In 1979, he joined the Agency for Defense Development, Daejon, Korea, where he is currently a principal researcher in the Airbreathing Propulsion Directorate.  相似文献   

14.
Magnetic flux leakage testing (MFLT), which measures the distribution of a magnetic field on a magnetized specimen by using a magnetic sensor such as a Hall sensor, is an effective nondestructive testing (NDT) method for detecting surface cracks on magnetized ferromagnetic materials. A scan-type magnetic camera, based on the principle of MFLT, uses an inclined Hall sensor array on a printed circuit board (PCB) to detect small cracks at high speed. However, the wave forms appear in a direction perpendicular to the scan because the sensors are bonded at different gradients and heights on the PCB despite careful soldering. In this paper, we propose linearly integrated Hall sensors (LIHaS) on a wafer to minimize these waves and to improve the probability of crack detection. A billet specimen is used to determine the effectiveness of the LIHaS in multiple crack detection. This paper was recommended for publication in revised form by Associate Editor Joo Ho Choi Prof. Jinyi Lee was born in Korea in 1968. He received the bachelor degree in mechanical design from Chonbuk University, Jeonju, Korea, in 1992. Also he received the master and Ph.D degree in mechanical and aeronautics & space engineering from Tohoku university, Sendai, Japan, in 1995 and 1998, respectively. He was a Researcher from 1998 to 2000 with the Tohoku university, Iwate university, Iwate Techno-Foundation and Saitama university, Japan. From 2000 to 2003, he worked for Lacomm Co., Ltd. and Gloria Techniques, Korea, as a researcher. In 2003, he was a lecturer with the Chosun university, Gwangju, Korea. Since 2005, he has been an Assistance Professor, Chosun university. His research interests are in application of magneto-optical film, laser and CCD line scan sensor, and development of magnetic camera. He is the author or coauthor of fifteen patents and over 50 scientific papers. Jiseong Hwang was born in Republic of Korea in 1979. He received the B.S and M.S degree in control and instrumentation engineering in 2005 and 2006, respectively, from the Chosun University, Gwangju, korea, where he is currently working toward the Ph.D. degree. His research interests are NDT and Evaluation, Magnetic camera. Jongwoo Jun was born in Korea in 1974. He received the bachelor degree in electronics engineering from Inje University, Kimhae, Korea, in 1999. He received the master degree in electronics engineering from Changwon University, Changwon, Korea, in 2005. Also he is currently working toward the Ph.D. degree in information & communication engineering from Chosun University, Gwangju, Korea. He worked for Lacomm Co., Ltd. and Gloria Techniques from 1999 to 2005, Korea, as a researcher. His research interests are development of magnetic camera, NDT and evaluation. Dr. Seho Choi was born in Korea in 1964. He received bachelor degree in the department of electrical and electronic engineering from Kyungpook National University, Daegu, Korea, in 1987. And he received master degree in the department of elec trical and electronic engineering from Korea Advanced Institute of Science and Technology in 1989. He received Ph.D. degree in the department of electrical and electronic engineering from the University of Sheffield in the U.K. in 2001. He had been worked for Agency for Defense Development as a Researcher from 1989 to 1992, Korea. Since 1993, he has been worked for POSCO Research Lab. as a principal researcher. His main research activities are developing Surface Defect Inspection System for hot and cold rolled steel strip, hot wire rod, and hot slab. He is also interested in developing Internal Defect Detection System for steel products by using Ultra-sonic and magnetic camera techniques. His major is image processing to detect tiny defect in high background noise image. He published many scientific papers as the author or coauthor.  相似文献   

15.
This paper presents the continuous flow MHD(magnetohydrodynamic) micropump with side walled electrodes using Lorentz force, which is perpendicular to both magnetic and electric fields, for the application of microfluidic systems. A theoretically simplified MHD flow model includes the theory of fluid dynamics and electromagnetics and it is based upon the steady state, incompressible and fully developed laminar flow theory. A numerical analysis with the finite difference method is employed for solving the velocity profile of the working fluid across the microchannel under various operation currents and magnetic flux densities. In addition, the commercial CFD code called CFD-ACE has been utilized for simulating the MHD micropump. When the program was run(CFD-ACE), the applied current and magnetic flux density were set to be the variables that affected the performance of the MHD micropump. The MHD micropump was fabricated by using MEMS technology. The performance of the MHD micropump was obtained by measuring the flow rate as the applied DC current was changed from 0 to 1mA at 4900 and 3300 Gauss for the electrodes with the lengths of 5000, 7500 and 10000 μm, respectively. The experimental results were compared with the analytical and the numerical results. In addition, with the theoretical analysis and the preliminary experiments, we propose a final model for a simple and new MHD micropump, which could be applicable to microfluidic systems. This paper was recommended for publication in revised form by Associate Editor Seungbae Lee Bumkyoo Choi received a B.S. degree in mechanical engineering, M.S. in mechanical design engineering from Seoul National University, Seoul, Korea in 1981 and 1983 respectively, and PhD in engineering mechanics from the University of Wisconsin, Madison in 1992. From 1992 to 1994, he was a technical staff member of CXrL (Center of X-ray Lithography) in the University of Wisconsin where he developed a computer code for thermal modeling of X-ray mask membrane during synchrotron radiation. He is currently a professor in the Dept. of Mechanical Engineering of Sogang Univ., Seoul, Korea. His research interest includes microelec-tromechanical system (MEMS), micromatching and microfabrication technologies, and modeling issues. Sangsoo Lim received a B.S. degree in mechanical engineering from Sogang University, Seoul, Korea in 2005. He currently works at Hyundai Motors.  相似文献   

16.
A new instrument, an averaging bidirectional flow tube (BDFT), is proposed to measure single-phase flow rates. This averaging BDFT has unique measuring characteristics foremost among which is the capability to measure bidirectional flow and insensitivity of the fluid attack angle. Single phase calibration tests were conducted to demonstrate the performance of the averaging BDFT. Likewise, to enhance the applicability of the averaging BDFT on various flow conditions, flow analyses using CFD code were performed focusing on design optimization of the BDFT. The calibration test results indicated that this averaging BDFT has a linearity within 0.5 % in the Reynolds (Re) number range of above 10,000 where it is meaningful in terms of application. The flow analyses results demonstrate a good linearity of the averaging BDFT with various design features. Therefore, averaging BDFT can be applied for measurement of flow rates within a wide range of flow conditions. This paper was recommended for publication in revised form by Associate Editor Won-Gu Joo Kyoung-Ho Kang received his B.S. and M. S. degrees in Nuclear Engineering from SNU (Seoul National University), KOREA in 1993 and 1995, respectively. He then received his Ph.D. degree in Nuclear and Quantum Engineering from KAIST (Korea Advanced Institute of Science and Technology) in 2009. Dr. Kang is currently a senior researcher at the Korea Atomic Energy Research Institute in Daejeon, Korea. Dr. Kang’s research interests include analysis and experiments for the nuclear safety, thermal hydraulics, and experiments and modeling for the severe accidents. Byong-Jo Yun received his B.S. degree in Nuclear Engineering from SNU (Seoul National University), KOREA in 1989. He then received his M.S. and Ph.D. degrees from SNU in 1991 and 1996, respectively. Dr. Yun is currently a principal researcher at the Korea Atomic Energy Research Institute in Daejeon, Korea. Dr. Yun’s research interests include analysis and experiments for the nuclear safety, thermal hydraulics, two-phase flow, scaling analysis, and development of instrumentation for two-phase flow. Dong-Jin Euh received his B.S. degree in Nuclear Engineering from Seoul University, Korea, in 1993. He then received his M.S. and Ph.D. degrees from same university in 1995 and 2002, respectively. Dr. Euh is currently a researcher at thermal hydraulic safety research department of Korea Atomic Energy Research Institute in Daejeon, Korea. Dr. Euh’s research interests include two-phase thermal hydraulics in the Nuclear Systems and Fundamental Phenomena. Won-Pil Baek has been working at KAERI as the general project manager (director) for development of nuclear thermalhydraulic experiment and analysis technology since 2001. He received his B.S. degree in nuclear engineering from Seoul National University and his M.S. and Ph.D. degrees from KAIST. In 1991–2000, he worked for KAIST as a researcher and research professor. Currently he also serves as an executive editor of the Nuclear Engineering and Technology, an international journal of the Korean Nuclear Society. His research interests include critical heat flux, integral effect tests, modeling, nuclear safety, and advanced reactor development.  相似文献   

17.
The focus of this study is on the development of a mathematical model for estimating tension of a printing section by using the register error in R2R (Roll to Roll) e-Printing systems. In a printing section of conventional R2R printing systems, the tension is generally measured not for controlling but for monitoring, because the tension control may cause the occurrence of a register error. But, for high precision control, the tension in the R2R e-Printing system must be controlled as well as measured for more precise control of the register error. The tension can be measured by the loadcell in the conventional R2R systems. However, installing a loadcell on the R2R systems causes extra economic burden. In addition, the space for adding a loadcell on R2R systems is limited due to many components including dryers, lateral guider, doctor blade, ink supply unit and cooling unit. Therefore, a tension estimator can be another possibility for predicting the tension in a printing section. In this study, a new tension estimation model is proposed. The proposed model is based on the register error model, the equivalent torque equation, and the tension model considering tension transfer. Numerical simulations and experimental results showed that the proposed model was effective in estimating the tension in a printing section. This paper was recommended for publication in revised form by Associate Editor Hong Hee Yoo Chang-Woo Lee received a B.S. degree in Mechanical Engineering from Konkuk University in 2001. He received his M.S. and Ph.D. degrees from Konkuk university in 2003 and 2008, respectively. Dr. Lee is currently a researcher at the Flexible Display Roll to Roll Research Center at Konkuk University in Seoul, Korea. Dr. Lee’s research interests are in the area of fault tolerant control, R2R e-Printing line design, and tension-register control. He is the holder of several patents related to R2R e-Printing system. Jang-Won Lee received the B.S. and M.S.degrees in mechanical engineering from Konkuk University, Seoul, Korea. He studied continuous flexible process at the FDRC (Flexible Display R2R Research Center, Project Director: Kee-Hyun Shin), as a reseacher from the concentment to 2008. Since 2008, he has been a Research Engineer with the SKC Films R&D, Suwon, Gyeonggi-do, Korea. Now he is great on the plastic flim mechanics such as a scratch on the film surface, film extruding, winding/slitting mecha-nism and coating processes. Hyunkyoo Kang received the B.S. and M.S degree in 2000 and 2003 res-pectively from Konkuk Uni-versity, Seoul, Korea, where he is currently working toward the Ph. D. degree in mechanical design. He took part in the development of an autoalign guiding system for high-speed winding in a cable winding system, a 3-D roll-shape diagnosis method in a steel rolling system, a design of register controller for high-speed converting machine and real-time control design of electronic printing machine. His research topics include register modeling and control for printed electronics and distributed real-time control. Kee-Hyun Shin received the B.S. degree from Seoul National University, Seoul, Korea, and the M.S. and Ph.D. degrees in mechanical engineering from Oklahoma State University (OSU), Stillwater. Since 1992, he has been a Professor with the Department of Mechanical and Aerospace Engineering, Konkuk University, Seoul, Korea. For more than 18 years, he has covered several research topics in the area of web handling, including tension control, lateral dynamics, diagnosis of defect rolls/rollers, and fault-tolerant realtime control in the Flexible Display Roll-to-Roll Research Center, Konkuk University, of which he has also been a Director. He is the author of Tension Control (TAPPI Press, 2000) and is the holder of several patents related to R2R e-Printing system.  相似文献   

18.
This paper proposes a rational B-spline hypervolume that represents a volume object which has multiple attributes defined in a multidimensional space. This representation provides a mathematical framework for modeling and visualizing a multidimensional multivariate object as well as analyzing the object interiors to extract its intrinsic features that are directly inaccessible. We discuss the NURBS extension procedure showing that the proposed hypervolume is a generalized volume function not depending on the domain dimensionality and its range dimensionality. Useful expressions arising in connection with a computational treatment are presented for geometric and mathematical analysis of a volume object based on the proposed hypervolume. We also describe the approximation and interpolation algorithms of the proposed hypervolume. Finally, we show various applications such as grid generation, flow visualization, implicit surface modeling, and image morphing. They demonstrate the usefulness and the extensibility of the proposed hypervolume. This paper was recommended for publication in revised form by Associate Editor Dae-Eun Kim Sangkun Park received his B.S. in Mechanical Engineering from POSTECH, Korea, in 1991. He then received his M.S. and Ph.D. degrees from Seoul National University in 1993 and 1997, respectively. Dr. Park is currently a Professor in Mechanical En-gineering at Chungju National University in Chungju, Korea. His research interests include geometric modeling and processing, CAD/CAM/CAE, scientific visualization, virtual engineering, and structural optimization.  相似文献   

19.
In the previously introduced direct adaptive command shaping filter (ACSF), the time-delay value is fixed and only the magnitudes of the impulses are learned. The performance of the direct adaptive time-delay command shaping filter, however, depends on the select time-delay. In this paper, the authors introduce a new scheme to extract the optimal time-delay value for the improved vibration suppression in flexible motion system. To develop the optimal time-delay extraction scheme, the authors have analyzed the effect of the time-delay value on the performance of the direct ACSF. Based on the analysis result the authors have established a set of equations to extract the optimal time-delay toward the optimal vibration suppression performance of ACSF. Experimental results using a gantry robot with a single flexible link show the effectiveness of the proposed time-delay adaptation approach for the improved vibration suppression. This paper was presented at the 4th Asian Conference on Multibody Dynamics(ACMD2008), Jeju, Korea, August 20–23, 2008. Joo Han Park received the B.S. and M.S. degrees in Mechanical Engineering from the Kyung Hee University, Korea, in 2005 and 2007. He is currently a candidate for the PhD at Kyung Hee University, Korea. His research interests include robotics and vibration control. Sungsoo Rhim received his B.S. and M.S. degrees in Mechanical Engineering from Seoul National Univ., Korea, in 1990 and 1992 respectively. He then received his Ph.D. degree from Georgia Institute of Technology in 2000. He worked for CAMotion, Inc. in GA, USA, as Research Director from 2000 until 2003 and he is currently an Assistant Professor at the Dept. of Mechanical Engineering in Kyung Hee Univ., Korea. His research interests include system dynamics, control, robotics and vibration.  相似文献   

20.
Korea has recently developed a total shock physics code, ExLO, based on the three-dimensional finite element method in order to calculate highly transient events involving large deformations. One special feature of the code is that the Lagrangian, ALE and Eulerian schemes are integrated into a single framework. The details of the numerical schemes are described in a previous paper [1]. In this paper, the modeling capability of ExLO has been described for two extreme loading events: high-speed impacts and explosions. Results of three-dimensional calculations for penetration of long rods and segments (L/D < 1) into thick target show a good agreement with experimental results and other finite difference solutions. Next, we include the free field air blast modeling by two approaches, one-dimensional spherical coordinates and three-dimensional rectangular coordinates. The predictions are compared with an analytic solution of air blast. For large scale simulations required for complex design problems, some advances in the field of parallelization and adaptive meshing are demanded. This paper was recommended for publication in revised form by Associate Editor Heoung Jae Chun Minhyung Lee. Professor in the Mechanical and Aerospace Engineering at the Sejong University, Seoul, Korea, holds a PhD from the University of Texas at Austin. His research interests include Lagrangian, Multi-material Eulerian and arbitrary Lagrangian-Eulerian (ALE) finite element methods for high strain rate of large deformation problems (eg, high speed impact/penetration, air blast/underwater explosion and bubble dynamics). Prior to joining Sejong University, he was with the US Naval Postgraduate School, Monterey, CA. as a research professor working on the UNDEX problems. He was also with the Institute for Advanced Technology, Austin, TX. (federated with Army Research Lab.) working on the highly transient dynamics. Wanjin Chung. Professor in the Die and Mould Engineering at the Seoul National University of Technology, Seoul, Korea, holds a PhD from Korea Advanced Institute of Technology. His research interests include the development of finite element methods for large deformation problems and its application to metal forming problems (eg, sheet metal forming, forging, high-velocity forming). Prior to joining Seoul National University of Technology, he works at Samsung Advanced Institute of Technology, Kiheung, Korea, as a senior researcher.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号