首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Equilibrium electrical conductivity data for large-grained, poly crystalline, undoped BaTiO3, as a function of temperature, 750° to 1000°C, and oxygen partial pressure, 10−20< P O2<10−1 MPa, were quantitatively fit to a defect model involving only doubly ionized oxygen vacancies, electrons, holes, and accidental acceptor impurities. The latter are invariably present in sufficient excess to control the defect concentrations through the compensating oxygen vacancies, except under the most severely reducing conditions. Singly ionized oxygen vacancies play no discernible role in the defect chemistry of BaTiO3 within this experimental range. The derived accidental acceptor content has a slight temperature dependence which may reflect some small amount of defect association. Deviation of the conductivity minima from the ideal shape yields a small P O2-independent conductivity contribution, which is tentatively identified as oxygen vacancy conduction.  相似文献   

2.
The electrical properties of ceramic BaTiO3 were investigated by ac impedance spectroscopy over the ranges 25°-330°C and 0.03 Hz-1 MHz. Results are compared with those obtained from fixed-frequency measurements, at 1 kHz and 100 kHz. Fixed-frequency Curie-Weiss plots show deviations from linearity at temperatures well above t c. The ac measurements show that grain boundary impedances influence Curie-Weiss plots in two ways: at high temperatures, they increasingly dominate the fixed-frequency permittivities; at lower temperatures, closer to T c, the high-frequency permittivity contains a contribution from grain boundary effects. Methods for extraction of bulk and grain boundary capacitances from permittivity and electric modulus complex plane plots are discussed. The importance of selecting the appropriate equivalent circuit to model the impedance response is stressed. A constriction impedance model for the grain boundary in BaTiO3 ceramics is proposed: the grain boundary capacitance is neither temperature-independent, nor shows Curie-Weiss behavior. The grain boundary is ferroelectric, similar to the grains, but its impedance is modified by either air gaps or high-impedance electrical inhomogeneity in the region of the necks between grains; the activation energy of the constriction grain boundary impedance differs from that of the bulk, suggesting differences in defect states or impurity levels.  相似文献   

3.
The solubility and mode of incorporation for BaO in BaTiO3 were studied by X-ray powder diffraction, scanning and transmission electron microscopy, electron probe microanalysis, and equilibrium electrical conductivity measurements. The presence of barium orthotitanate, Ba2TiO4, as a second phase for samples containing >0.1 mol% excess BaO was confirmed by direct microscopic examination. There was no evidence to support the incorporation of excess BaO into BaTiO3 by a Ruddlesden-Popper type of superlattice ordering mechanism. Measurement of the equilibrium electrical conductivity showed no detectable shift in the conductivity profile resulting from excess BaO, thus setting an upper limit of 100 ppm for the solubility of BaO in BaTiO3.  相似文献   

4.
Scanning electron microscopy and electron probe micro-analysis were used to investigate the microstructure of both slow-cooled and quenched polycrystalline BaTiO3 specimens with a small excess of TiO2 (Ba/Ti=0.995 to 0.999) or of BaO (Ba/Ti=1.002 and 1.005). The electron micrographs of polished and etched TiO2-excess BaTiOs samples, and of fracture surfaces of quenched samples, showed a second phase in the grain boundaries and triple-point regions, whereas no second phase was observed in samples having Ba/Ti=1.000. Microprobe analysis of the second phase gave compositions near that of the reported adjacent phase of higher TiO2 content, Ba6Ti17O40. The results indicate that the solubility of TiO2 in BaTiO3 is <0.1 mol%.  相似文献   

5.
Dislocation loops in pressureless-sintered undoped BaTiO3 ceramics have been analyzed by transmission electron microscopy. The Burgers vector of the loops and its sense b =+1/2[010] were determined using the g·b =0 invisibility criteria, combined with the inside–outside contrast technique using ( g·b ) s g >0 or<0, keeping the deviation parameter s g >0. The edge-vacancy nature was further ascertained by determining the loop habit plane normal n =[0 1 0]. Weak-beam dark-field imaging reveals that loops contained no stacking fault fringes; they are edge-vacancy partial dislocation loops lying in {020} or {010} where parts of the TiO2 or BaO layer are vacant. It is suggested that the extrinsic defects of both cations and oxygen vacancies generated by non-stoichiometry have condensed during sintering in air and are responsible for the formation of such vacancy loops.  相似文献   

6.
Silver, palladium, and their alloys are frequently used as electrode materials for BaTiO3 (BT) based dielectrics. However, the electrodes and dielectrics usually are cofired at high temperatures, and silver and palladium can dissolve into the BT during cofiring. In the present study, the solubility of silver and palladium into BT after cofiring was determined. Three measurement techniques were used to determine solubility: chemical analysis, structural analysis, and dielectric analysis. The solubility of the silver in the BT was low, 450 ppm, after cofiring at 1290°C for 2 h in air. The diffusion distance of the silver ions into the BT was >5 μm. The solubility of the palladium in the BT was even lower, 50 ppm at 1290°C, and the diffusion distance was ∼1 μm. The solubility of both the silver and the palladium in the BT decreased as the oxygen partial pressure of the sintering atmosphere decreased. These results demonstrated that both silver and palladium solutes act as acceptors for BT.  相似文献   

7.
Nb-doped BaTiO3 has been prepared with various Ba/(Ti + Nb) ratios such that single-phase products will be obtained if the charged donor center is assumed to be compensated in turn by Ba vacancies, Ti vacancies, equal concentrations of the two cation vacancies, oxygen interstitials, or electrons. For air-Fired samples, examination by transmission electron microscopy showed that only the composition adjusted for compensation by titanium vacancies was single phase. The other compositions contained a Ti-rich second phase in order to achieve a matrix with the appropriate concentration of titanium vacancies. When sintered in a reducing atmosphere, compensation was by electrons, and a Ba-rich second phase was present hi the composition adjusted to give compensation by titanium vacancies. The results indicate that for donor concentrations greater than ∼0.5 mol% in BaTiO3, charge compensation is achieved by Ti vacancies under oxidizing conditions, and by electrons (as is well-known) under reducing conditions.' The effect of compensating defects on grain growth is also discussed.  相似文献   

8.
9.
Using a linear voltage ramp method, ultraslow dielectric relaxation processes of La-doped BaTiO3 boundary layer (BL) capacitors are measured at room temperature. For the electric polarization model of a double-layer dielectric, a procedure to calculate the electrical parameters of grain and grain boundary has been developed. Calculated results suggest that there is a shell on the surface of the grain. TEM images of the BL capacitor also show a lot of microregions with minor structural modifications. Relaxation times are estimated from the equivalent circuit and are in agreement with fitted results.  相似文献   

10.
The solid solubility of Ho3+ in BaTiO3 fired under the reducing conditions of a nitrogen atmosphere containing 10% of hydrogen was studied by quantitative electron-probe microanalysis using wavelength-dispersive spectroscopy. The solubility was found to depend mainly on the starting composition. In the TiO2-rich samples, the solubility of the Ho3+ donors at the Ba lattice sites was measured to be ∼4 mol% HoBa (Ba0.96Ho0.04TiO3−δ at 1400°C), which is much higher than after sintering in air. In the BaO-rich compositions, the solubility of the Ho3+ acceptors at the Ti sites (solubility limit     at 1500°C) decreased compared with that in air. Like with sintering in air, under reducing conditions, the highest solubility of holmium in BaTiO3 was determined when it was incorporated at both lattice sites (solubility limit     ).  相似文献   

11.
Polycrystalline BaTiO3 prepared from alkoxy-derived high-purity submicron powders was studied. Highly dense bodies with uniform grain size were obtained typically by uniaxial cold-pressing at 3000 psi and isostatic pressing at 30,000 psi followed by sintering at 1300° to 1350°C in air for 0.5 to 1 h. Using the same consolidation parameters and intimate mixing of residual concentrations of highly active fine-particulate rare-earth oxides to act as grain-growth inhibitors, nearly theoretically dense bodies with a uniform microstructure and 1 to 1.5 μm grain size were obtained. Typical microstructures with well-defined 90° and 180° domain patterns characteristic of BaTiO3: were observed. Also, an example of a checkerboard pattern resulting from a 〈111〉 ingrown twin plane in the structure which is independent of the Curie temperature was found. Electrical measurements on the undoped material indicated room-temperature dielectric constant and tan δ values of 5000±500 and 4×10−3, respectively. Very high k values and dissipation factors were observed with the La2O3- and Nd2O3-doped samples.  相似文献   

12.
The solid solubility of R ions (R = Ho3+, Dy3+, and Y3+) in the BaTiO3 perovskite structure was studied by quantitative electron-probe microanalysis (EPMA) using wavelength-dispersive spectroscopy (WDS), scanning electron microscopy (SEM), and X-ray diffractometry (XRD). Highly doped BaTiO3 samples were prepared using mixed-oxide technology including equilibration at 1400° and 1500°C in ambient air. The solubility was found to depend mainly on the starting composition. In the TiO2-rich samples a relatively low concentration of R incorporated preferentially at the Ba2+ lattice sites (solubility limit ∼Ba0.986R0.014Ti0.9965(V"Ti")0.0035O3at 1400°C). In BaO-rich samples a high concentration of R entered the BaTiO3 structure at the Ti4+ lattice sites (solubility limit ∼BaTi0.85R0.15O2.925(VO••)0.075at 1500°C). Ho3+, Dy3+, and Y3+incorporated preferentially at the Ti4+ lattice sites stabilize the hexagonal polymorph of BaTiO3. The phase equilibria of the Ho3+–BaTiO3 solid solutions were presented in a BaO–Ho2O3–TiO2phase diagram.  相似文献   

13.
The temperature dependence of the reaction rates in a 50(BaTiO3)-50(SrTiO3) ceramic mixture (wt%) was studied by high-temperature X-ray diffraction. The data were fitted to two theoretical models and times for complete reactions and activation energy were calculated. Use of the results in electronic material applications is discussed.  相似文献   

14.
Polycrystalline barium titanate fired in nitrogen at 1300° to 1400°C accommodates up to 3 mole % UO2 in solid solution; its structure is then cubic at room temperature. With BaUO3 additions the structure becomes disordered and quasi-cubic. In air, about 1 mole % UO2 goes into solid solution in BaTiO3 but the structure remains tetragonal. Diffraction peaks of a new phase, possibly a ternary oxide of barium, uranium, and titanium, appear in patterns of specimens containing more than 2 mole % UO2. The dielectric constant of BaTiO3 ceramics fired in air, steam, or oxygen increases with up to about 0.5 mole % UO2 but declines rapidly above this level. The dielectric constant of BaUO3 is about two orders of magnitude lower than that of BaTiO3, and additions of BaUO3 invariably lower the dielectric constant of BaTiO3.  相似文献   

15.
Calculations of bulk and surface defect energies were used to develop a model of the grain structure of doped BaTiO3, Segregation processes are expected as a consequence of thermo-dynamic and kinetic factors and result in the development of n-i-n junctions at intergranular contacts, thus leading to the observed PTCR behavior of polycrystalline materials.  相似文献   

16.
The effect of added Al, as an acceptor impurity, on the equilibrium electrical conductivity of large-grained, polycrystalline BaTiO3, is consistent with a previously proposed defect model which involves only doubly ionized oxygen vacancies, electrons, holes, and acceptor impurities. The behavior is an extension of that of undoped BaTiO3, in which an accidental net acceptor excess already plays an important role. Comparison of the derived active acceptor content with the amount of added Al indicates that Al is <50% effective in creating acceptor levels. The magnitude of a small Po2-independent conductivity component, necessary to fit the observed conductivity minima, increases with added Al content. This is consistent with a contribution from extrinsic oxygen vacancy conduction.  相似文献   

17.
The release of oxygen during the sintering of Sb2O3-doped BaTiO3 ceramics containing excess TiO2 was measured using a mass spectrometer. The amount of oxygen released is proportional to the dopant concentration in the product phase. The evolution of oxygen during sintering was attributed to dissolution of the oxidized form of doped BaTiO3 in the reacting mixture and simultaneous re-crystallization of the- reduced form.  相似文献   

18.
The formation of a solid solution between cubic perovskne-type KUO3 and pseudocubic BaUO3 was investigated. The reaction begins at 550°C, and the solubility of KUO3 reaches more than 30 mol% KUO3 in BaUO3 at 750°C. The region in which a single-phase solid solution exists was determined. The variation of the lattice parameter of the reacted samples was caused by solid solution formation and by oxygen absorption. The electrical conductivities of the samples varied with composition and showed a distinct maximum. The activation energy for electric conduction was very low compared to that for UOz+x, or U3O8.  相似文献   

19.
The electric-field-induced strain in single-crystal BaTiO3 was investigated. For crystals relatively free of twinning, a longitudinal strain of 0.35% can be induced just above the ferroelectric-paraelectric phase transition temperature (Tc1) primarily by field-forced paraelectric-ferroelectric phase transition. For heavily twinned crystals, 90° domain reorientation under the applied electric field plays an important role in the induced strain below Tc1, and an induced strain of 0.6% is observed a few degrees below Tc1. Above Tc1, the electrostrictive property measured by a weak excitation field is purely intrinsic. When the excitation field is large, so that a field-forced paraelectric-ferroelectric phase transition is involved, the x33/P23 value (where x33 and P3 are the induced strain and polarization along the z axis, respectively) is intrinsic at higher temperature, but may be modified at temperatures just at and slightly above Tc1 by residual 90° twin structure.  相似文献   

20.
BaTiO3 nanofibers were prepared by electrospinning. The morphology of synthesized BaTiO3 nanofibers was investigated under different heat treatment conditions. The phase transformations in BaTiO3 nanofibers were monitored using Raman spectroscopy. It has been found that the Curie temperature of BaTiO3 nanofibers increased to 220°C, which is notably higher than the bulk BaTiO3 ceramics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号