共查询到20条相似文献,搜索用时 0 毫秒
1.
Aligned Carbon Nanotube–Based Flexible Gel Substrates for Engineering Biohybrid Tissue Actuators
下载免费PDF全文
![点击此处可从《Advanced functional materials》网站下载免费的PDF全文](/ch/ext_images/free.gif)
Su Ryon Shin Courtney Shin Adnan Memic Samaneh Shadmehr Mario Miscuglio Hyun Young Jung Sung Mi Jung Hojae Bae Ali Khademhosseini Xiaowu Tang Mehmet R. Dokmeci 《Advanced functional materials》2015,25(28):4486-4495
Muscle‐based biohybrid actuators have generated significant interest as the future of biorobotics but so far they move without having much control over their actuation behavior. Integration of microelectrodes into the backbone of these systems may enable guidance during their motion and allow precise control over these actuators with specific activation patterns. Here, this challenge is addressed by developing aligned carbon nanotube (CNT) forest microelectrode arrays and incorporating them into scaffolds for cell stimulation. Aligned CNTs are successfully embedded into flexible and biocompatible hydrogels exhibiting excellent anisotropic electrical conductivity. Bioactuators are then engineered by culturing cardiomyocytes on the CNT microelectrode‐integrated hydrogel constructs. The resulting cardiac tissue shows homogeneous cell organization with improved cell‐to‐cell coupling and maturation, which is directly related to the contractile force of muscle tissue. This centimeter‐scale bioactuator has excellent mechanical integrity, embedded microelectrodes, and is capable of spontaneous actuation behavior. Furthermore, it is demonstrated that a biohybrid machine can be controlled by an external electrical field provided by the integrated CNT microelectrode arrays. In addition, due to the anisotropic electrical conductivity of the electrodes provided by aligned CNTs, significantly different excitation thresholds are observed in different configurations such as the ones with electrical fields applied in directions parallel versus perpendicular to the CNT alignment. 相似文献
2.
3.
基于Parylene的柔性微电极阵列微加工工艺研究 总被引:1,自引:0,他引:1
基底集成的柔性微电极阵列(MEAs)从一个全新的角度演绎了植入式神经系统,对神经进行电刺激并记录神经电信号.以一种新型聚合物材料聚对二甲苯(parylene)为基底,制备出了用于神经接口的柔性神经微电极阵列.采用MEMS加工技术,设计了一种基于parylene柔性神经微电极阵列的加工工艺方法,并讨论了在流片过程中的关键问题,如掩膜层的选择、电极的剥离及焊接与封装等.该柔性微电极阵列在用于视觉假体的神经接口方面具有独特的应用优势. 相似文献
4.
场发射阵列阴极应用于行波管的不足主要表现在:FEAs发射不稳定、阴极发射电流密度较低及电子束存在散焦的问题.分析了产生这些问题的主要原因。提出了相应的解决方案,主要包括:提高真空度,选择合适的发射体材料,增加电阻层等,以提高电子发射的稳定性;优化发射体结构参量,改善制作方法等,以增大阴极发射的电流密度;对电子枪结构进行修改,解决电子柬散焦等问题。最后,概述了新型材料——碳纳米管在行波管中的应用现状,目前虽然还不成熟,却表现出了极大的潜力: 相似文献
5.
6.
A microwave‐induced controlled method for the purification of single‐walled carbon nanotubes (SWCNTs) by removing residual metal catalysts and carbonaceous impurities is reported. Compared to conventional strong acid treatment, this one‐step method uses dilute acids and complexing agents and reduces the reaction times to the order of minutes. Furthermore, the SWCNTs retain their chemical and physical properties and are not functionalized. Electron microscopy, Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA) and atomic absorption (AA) spectrometry studies were used to characterize the purified SWCNTs. 相似文献
7.
Qinyuan Jiang Fei Wang Run Li Xueke Wu Wenshuo Zhang Siming Zhao Ya Huang Baoshun Wang Shiliang Zhang Yanlong Zhao Rufan Zhang 《Advanced functional materials》2023,33(10):2212665
Ultralong carbon nanotubes (CNTs) are believed to be ideal candidates for various high-end applications because of their macroscale lengths, perfect structures, and excellent mechanical and electrical properties. The key to the wide application of ultralong CNTs is their controlled synthesis and mass production. Ultralong CNTs usually follow a flying kite-like growth mechanism, during which process there exists a thermal buoyancy that keeps ultralong CNTs floating in the gas flow. However, it remains vague for a long time about the origin of this thermal buoyancy. Herein, a simple and quantitative heat balance model is proposed to describe the inherent thermal effect of substrates, which explains the origin of the temperature difference between the substrate and the gas flow. The inherent thermal effect is found to be positively correlated with the emissivity of the substrates. Then, the local temperature gradient induced by the inherent thermal effect is found to result in both natural convection and thermophoresis. Thermophoretic force is proven to be the dominant driving force for lifting the ultralong CNTs up from the substrates. By utilizing the inherent thermal effect and designing the local temperature distribution, the areal density and orientation of ultralong CNT arrays are modulated. 相似文献
8.
Jong Seob Choi Alec S. T. Smith Nisa P. Williams Tatsuya Matsubara Minji Choi Joon‐Wan Kim Hyung Jin Kim Seungkeun Choi Deok‐Ho Kim 《Advanced functional materials》2020,30(25)
In this study, nanopatterned Nafion microelectrode arrays for in vitro cardiac electrophysiology are reported. With the aim of defining sophisticated Nafion nanostructures with highly ionic conductivity, fabrication parameters such as Nafion concentration and curing temperature are optimized. By increasing curing temperature and Nafion concentration, the replication fidelity of Nafion nanopatterns when copied from a polydimethylsiloxane master mold are controlled. It is also found that cross‐sectional morphology and ion current density of nanopatterned Nafion strongly depends on the fabrication parameters. To investigate this dependency, current‐voltage analysis is conducted using organic electrochemical transistors overlaid with patterned Nafion substrates. Nanopatterned Nafion is found to allow higher ion current densities than unpatterned surfaces. Furthermore, higher curing temperatures are found to render Nafion layers with higher ion/electrical transfer properties. To optimize nanopattern dimensions, electrical current flows, and film uniformity, a final configuration consisting of 5% nanopatterned Nafion cured at 65 °C is chosen. Microelectrode arrays (MEAs) are then covered with optimized Nafion nanopatterns and used for electrophysiological analysis of two types of induced pluripotent stem cell‐derived cardiomyocytes (iPSCs‐CMs). These data highlight the suitability of nanopatterned Nafion, combined with MEAs, for enhancing the cellular environment of iPSC‐CMs for use in electrophysiological analysis in vitro. 相似文献
9.
采用乙醇催化燃烧法,以钴盐作为催化剂先体、薄铜片作为基底制备碳纳米管。分别以氯化钴、硝酸钴和硫酸钴作为催化剂先体,研究了不同催化剂先体对碳纳米管生长的影响;利用扫描电镜,透射电镜对碳纳米材料的形貌和结构进行了表征,研究了不同钴盐的催化剂先体对碳纳米管形态与结构的影响,讨论了碳纳米管的生长机制。实验发现,其他制备条件相同,当催化剂先体为氯化钴时,碳纳米管与大量絮状杂质缠绕在一起;当催化剂先体为硝酸钴时,碳纳米管容易形成弯曲、不规则的波浪形结构;而当催化剂先体为硫酸钴时,实验所得的碳纳米材料几乎全为取向规则、直径均一的碳纳米纤维,只观察到少量碳纳米管。 相似文献
10.
以不同浓度的FeCl3溶液作为催化剂先体,利用乙醇催化燃烧法,在铜片上生长出了碳纳米管和碳纳米纤维。讨论了不同浓度的FeCl3催化剂先体对生长碳纳米材料产物和形貌的影响。利用扫描电镜,透射电镜和喇曼光谱对样品的形貌和结构进行了表征。实验结果表明,随着催化剂先体浓度增大,碳纳米材料产量增大,直径呈现增大趋势,其直径范围也逐渐变大。当催化剂先体浓度为0.01mol/L时,可以制备出直径较小的碳纳米管;当催化剂先体浓度为0.1mol/L时,可以制备出直径分布均匀的碳纳米管与碳纳米纤维的混合物;当催化剂先体浓度为1mol/L时,可以制备出直径分布不均匀的碳纳米纤维。 相似文献
11.
碳纳米管制备及其生长机制研究 总被引:1,自引:0,他引:1
采用乙醇催化燃烧法,以钴盐作为催化剂先体、薄铜片作为基底制备碳纳米管。分别以氯化钴、硝酸钴和硫酸钴作为催化剂先体,研究了不同催化剂先体对碳纳米管生长的影响;利用扫描电镜,透射电镜对碳纳米材料的形貌和结构进行了表征,研究了不同钴盐的催化剂先体对碳纳米管形态与结构的影响,讨论了碳纳米管的生长机制。实验发现,其他制备条件相同,当催化剂先体为氯化钴时,碳纳米管与大量絮状杂质缠绕在一起;当催化剂先体为硝酸钴时,碳纳米管容易形成弯曲、不规则的波浪形结构;而当催化剂先体为硫酸钴时,实验所得的碳纳米材料几乎全为取向规则、直径均一的碳纳米纤维,只观察到少量碳纳米管。 相似文献
12.
13.
Romain Fleurier Jean‐Sébastien Lauret Ugo Lopez Annick Loiseau 《Advanced functional materials》2009,19(14):2219-2223
Diameter separation of single‐walled carbon nanotubes is achieved via the density gradient ultracentrifugation process. Statistical analysis of the separated samples is performed using high‐resolution transmission electron microscopy (HRTEM). The evolution of the diameter distribution with respect to the gradient density is extracted by analyzing hundreds of HRTEM images, and the results are found to be consistent with those estimated by UV–vis–IR spectroscopy. The efficiency of the separation process can be quantitatively characterized by the standard deviation of the diameter distribution, which is determined from the TEM analyses. This particular study indicated that for electric arc nanotubes dispersed in sodium cholate, diameter sorting is more efficient in the upper part of the gradient. 相似文献
14.
以不同浓度的FeCl3溶液作为催化剂先体,利用乙醇催化燃烧法,在铜片上生长出了碳纳米管和碳纳米纤维。讨论了不同浓度的FeCl3催化剂先体对生长碳纳米材料产物和形貌的影响。利用扫描电镜,透射电镜和喇曼光谱对样品的形貌和结构进行了表征。实验结果表明,随着催化剂先体浓度增大,碳纳米材料产量增大,直径呈现增大趋势,其直径范围也逐渐变大。当催化剂先体浓度为0.01mol/L时,可以制备出直径较小的碳纳米管;当催化剂先体浓度为0.1mol/L时,可以制备出直径分布均匀的碳纳米管与碳纳米纤维的混合物;当催化剂先体浓度为1mol/L时,可以制备出直径分布不均匀的碳纳米纤维。 相似文献
15.
Chen Feng Kai Liu Jeah‐Sheng Wu Liang Liu Jia‐Shyong Cheng Yuying Zhang Yinghui Sun Qunqing Li Shoushan Fan Kaili Jiang 《Advanced functional materials》2010,20(6):885-891
A straightforward roll‐to‐roll process for fabricating flexible and stretchable superaligned carbon nanotube films as transparent conducting films is demonstrated. Practical touch panels assembled by using these carbon nanotube conducting films are superior in flexibility and wearability—and comparable in linearity—to touch panels based on indium tin oxide (ITO) films. After suitable laser trimming and deposition of Ni and Au metal, the carbon nanotube film possesses excellent performance with two typical values of sheet resistances and transmittances (208 Ω □?1, 90% and 24 Ω □?1, 83.4%), which are comparable to ITO films and better than the present carbon nanotube conducting films in literature. The results provide a route to produce transparent conducting films more easily, effectively, and cheaply, an important step for realizing industrial‐scale applications of carbon nanotubes for transparent conducting films. 相似文献
16.
B. R. Martin D. C. Furnange T. N. Jackson T. E. Mallouk T. S. Mayer 《Advanced functional materials》2001,11(5):381-386
Capillary interactions at a water–air interface were used to align a two‐inch glass wafer to a three‐inch silicon wafer. Flat, smooth silica surfaces were patterned with gold millimeter‐scale borders enclosing micrometer‐scale features. The gold features were rendered hydrophobic through the use of self‐assembled monolayers, the silica was wetted with water, and the wafers were pressed together. The assembly snapped into alignment based upon the minimization of the curvature of the meniscus formed at the water–air interface. The accuracy of this alignment was better than one micrometer. Gravitational energy was used to systematically study the alignment force as a function of pattern parameters. These data can be modeled by interfacial energy theory. These experiments identify a clear set of conditions necessary for the use of this technique for high‐precision alignment. 相似文献
17.
Satoshi Yasuda Atom Furuya Yosuke Uchibori Jeheon Kim Kei Murakoshi 《Advanced functional materials》2016,26(5):738-744
A highly active iron–nitrogen‐doped carbon nanotube catalyst for the oxygen reduction reaction (ORR) is produced by employing vertically aligned carbon nanotubes (VA‐CNT) with a high specific surface area and iron(II) phthalocyanine (FePc) molecules. Pyrolyzing the composite easily transforms the adsorbed FePc molecules into a large number of iron coordinated nitrogen functionalized nanographene (Fe–N–C) structures, which serve as ORR active sites on the individual VA‐CNT surfaces. The catalyst exhibits a high ORR activity, with onset and half‐wave potentials of 0.97 and 0.79 V, respectively, versus reversible hydrogen electrode, a high selectivity of above 3.92 electron transfer number, and a high electrochemical durability, with a 17 mV negative shift of E 1/2 after 10 000 cycles in an oxygen‐saturated 0.5 m H2SO4 solution. The catalyst demonstrates one of the highest ORR performances in previously reported any‐nanotube‐based catalysts in acid media. The excellent ORR performance can be attributed to the formation of a greater number of catalytically active Fe–N–C centers and their dense immobilization on individual tubes, in addition to more efficient mass transport due to the mesoporous nature of the VA‐CNTs. 相似文献
18.
Wan-Lou Lei Chih-Wei Peng Shao-Chu Chiu Huai-En Lu Chun-Wei Wu Tzu-Ya Cheng Wei-Chen Huang 《Advanced functional materials》2024,34(3):2307365
Biohybrid neural interfaces (BHNIs) are a new class of neuromodulating devices that integrate neural microelectrode arrays (MEAs) and cell transplantation to improve treatment of nerve injuries and disorders. However, current BHNI devices are made from abiotic materials that are usually bio-passive, non-biodisintegratable, or rigid, which restricts encapsulated cell activity and host nerve reconstruction and frequently leads to local tissue inflammation. Herein, the first MEA composed of all disintegratable hydrogel tissue scaffold materials with synergistic performances of tissue conformal adhesiveness, MEA technologies, tissue scaffolding and stem cell therapy on a time scale appropriate for nerve tissue repair is proposed. In particular, the MEA conductive tracks are made from extracellular matrix (ECM)-based double-cross-linked dual-electrically conductive hydrogel (ECH) systems with robust tissue-mimicking chemical/physical properties, electrical conductivity, and an affinity for neural progenitor stem cells. Meanwhile, the MEA hydrogel substrate prepared from transglutaminase-incorporated gelatin/silk precursors simultaneously promotes gelation and interfacial adhesion between all MEA stacks, leading to rapid and scalable device integration. When the full hydrogel MEA is subjected to various mechanical stimuli and moisture, it is structurally stable with a low impedance (4 ± 3 kΩ) comparable to a recently reported benchmark. With seamless lamination around peripheral nerve fibers, the device permits successive neural signal monitoring for wound condition evaluation, while demonstrating synergistic effects of spatiotemporally controlled electrical stimulation and cell transplantation to accelerate restoration of motor function. This BHNI is completely degraded by 1 month thus eliminating the need for surgical retrieval to stably remain, interact, and further fuse with host tissues, successfully exhibiting compatible integration of biology and an implanted electrical system. 相似文献
19.
Dacheng Wei Yunqi Liu Lingchao Cao Hongliang Zhang Liping Huang Gui Yu Hisashi Kajiura Yongming Li 《Advanced functional materials》2009,19(22):3618-3624
Single‐walled carbon nanotubes (SWNTs) are a promising material for future nanotechnology. However, their applications are still limited in success because of the co‐existence of metallic SWNTs and semiconducting SWNTs produced samples. Here, electrochemical etching, which shows both diameter and electrical selectivity, is demonstrated to remove SWNTs. With the aid of a back‐gate electric field, selective removal of metallic SWNTs is realized, resulting in high‐performance SWNT field‐effect transistors with pure semiconducting SWNT channels. Moreover, electrochemical etching is realized on a selective area. These findings would be valuable for research and the application of SWNTs in electrochemistry and in electronic devices. 相似文献
20.
Jose´ M. Romo‐Herrera David A. Cullen Eduardo Cruz‐Silva Daniel Ramírez Bobby G. Sumpter V. Meunier Humberto Terrones David J. Smith Mauricio Terrones 《Advanced functional materials》2009,19(8):1193-1199
A detailed characterization, using high resolution electron microscopy/microanalysis (SEM, TEM, HRTEM, and EDX), reveals tubular carbon nanostructures exhibiting complex and fascinating morphologies. The materials were obtained by sulfur‐assisted chemical vapor deposition. It is demonstrated that S not only acts on the catalyst, but also can be detected in the carbon lattice of the nanostructures. The experimental data presented here confirms the critical role of S, which is responsible for inducing curvature and therefore influencing the final carbon nanostructure morphology. In particular, different types of covalent Y‐junctions of CNTs and even sea urchin‐like nanostructures were produced and their experimental conditions are listed and discussed. 相似文献