首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new class of biofriendly ionogels produced by gelation of microcellulose thin films with tailored 1‐ethyl‐3‐methylimidazolium methylphosphonate ionic liquids are demonstrated. The cellulose ionogels show promising properties for application in flexible electronics, such as transparency, flexibility, transferability, and high specific capacitances of 5 to 15 μF cm?2. They can be laminated onto any substrate such as multilayer‐coated paper and act as high capacitance dielectrics for inorganic (spray‐coated ZnO and colloidal ZnO nanorods) and organic (poly[3‐hexylthiophene], P3HT) electrolyte‐gated field‐effect transistors (FETs), that operate at very low voltages (<2 V). Field‐effect mobilities in ionogel‐gated spray‐coated ZnO FETs reach 75 cm2 V?1 s?1 and a typical increase of mobility with decreasing specific capacitance of the ionogel is observed. Solution‐processed, colloidal ZnO nanorods and laminated cellulose ionogels enable the fabrication of the first electrolyte‐gated, flexible circuits on paper, which operate at bending radii down to 1.1 mm.  相似文献   

2.
Solution‐processed, low cost thin films of layered semiconductors such as transition metal dichalcogenides (TMDs) are potential candidates for future printed electronics. Here, n‐type electrolyte‐gated transistors (EGTs) based on porous WS2 nanosheet networks as the semiconductor are demonstrated. The WS2 nanosheets are liquid phase exfoliated to form aqueous/surfactant stabilized inks, and deposited at low temperatures (T < 120 °C) in ambient atmosphere by airbrushing. No solvent exchange, further additives, or complicated processing steps are required. While the EGTs are primarily n‐type (electron accumulation), some hole transport is also observable. The EGTs show current modulations > 104 with low hysteresis, channel width‐normalized on‐conductances of up to 0.27 µS µm?1 and estimated electron mobilities around 0.01 cm2 V?1 s?1. In addition, the WS2 nanosheet networks exhibit relatively high volumetric capacitance values of 30 F cm?3. Charge transport within the network depends significantly on the applied lateral electric field and is thermally activated, which supports the notion that hopping between nanosheets is a major limiting factor for these networks and their future application.  相似文献   

3.
The fabrication and characterization of printed ion‐gel‐gated poly(3‐hexylthiophene) (P3HT) transistors and integrated circuits is reported, with emphasis on demonstrating both function and performance at supply voltages below 2 V. The key to achieving fast sub‐2 V operation is an unusual gel electrolyte based on an ionic liquid and a gelating block copolymer. This gel electrolyte serves as the gate dielectric and has both a short polarization response time (<1 ms) and a large specific capacitance (>10 µF cm?2), which leads simultaneously to high output conductance (>2 mS mm?1), low threshold voltage (<1 V) and high inverter switching frequencies (1–10 kHz). Aerosol‐jet‐printed inverters, ring oscillators, NAND gates, and flip‐flop circuits are demonstrated. The five‐stage ring oscillator operates at frequencies up to 150 Hz, corresponding to a propagation delay of 0.7 ms per stage. These printed gel electrolyte gated circuits compare favorably with other reported printed circuits that often require much larger operating voltages. Materials factors influencing the performance of the devices are discussed.  相似文献   

4.
Highly stretchable, high‐mobility, and free‐standing coplanar‐type all‐organic transistors based on deformable solid‐state elastomer electrolytes are demonstrated using ionic thermoplastic polyurethane (i‐TPU), thereby showing high reliability under mechanical stimuli as well as low‐voltage operation. Unlike conventional ionic dielectrics, the i‐TPU electrolyte prepared herein has remarkable characteristics, i.e., a large specific capacitance of 5.5 µF cm?2, despite the low weight ratio (20 wt%) of the ionic liquid, high transparency, and even stretchability. These i‐TPU‐based organic transistors exhibit a mobility as high as 7.9 cm2 V?1 s?1, high bendability (Rc, radius of curvature: 7.2 mm), and good stretchability (60% tensile strain). Moreover, they are suitable for low‐voltage operation (VDS = ?1.0 V, VGS = ?2.5 V). In addition, the electrical characteristics such as mobility, on‐current, and threshold voltage are maintained even in the concave and convex bending state (bending tensile strain of ≈3.4%), respectively. Finally, free‐standing, fully stretchable, and semi‐transparent coplanar‐type all‐organic transistors can be fabricated by introducing a poly(3,4‐ethylenedioxythiophene):polystyrene sulfonic acid layer as source/drain and gate electrodes, thus achieving low‐voltage operation (VDS = ?1.5 V, VGS = ?2.5 V) and an even higher mobility of up to 17.8 cm2 V?1 s?1. Moreover, these devices withstand stretching up to 80% tensile strain.  相似文献   

5.
Biocompatible, biodegradable, and solid‐state electrolyte‐based organic transistors are demonstrated. As the electrolyte is composed of all edible materials, which are levan polysaccharide and choline‐based ionic liquid, the organic transistor fabricated on the electrolyte can be biocompatible and biodegrable. Compared to the other ion gel based electrolytes, it has superior electrical and mechanical properties, large specific capacitance (≈40 µF cm?2), non‐volatility, flexibility, and high transparency. Thus, it shows mechanical reliability by maintaining electrical performances under up to 1.11% of effective bending strain, 5% of stretching, and have low operation voltage range when it is utilized in organic transistors. Moreover, the biodegradable electrolyte‐based organic transistors can be applied to bio‐integrated devices, such as electrocardiogram (ECG) recordings on human skin and the heart of a rat. The measured ECG signals from the transistors, compared to signals from electrode‐based sensors, has a superior signal‐to‐noise ratio. The biocompatible and biodegradable materials and devices can contribute to the development of many bioelectronics.  相似文献   

6.
High‐capacitance bilayer dielectrics based on atomic‐layer‐deposited HfO2 and spin‐cast epoxy are used with networks of single‐walled carbon nanotubes (SWNTs) to enable low‐voltage, hysteresis‐free, and high‐performance thin‐film transistors (TFTs) on silicon and flexible plastic substrates. These HfO2–epoxy dielectrics exhibit excellent properties including mechanical flexibility, large capacitance (up to ca. 330 nF cm–2), and low leakage current (ca. 10–8 A cm–2); their low‐temperature (ca. 150 °C) deposition makes them compatible with a range of plastic substrates. Analysis and measurements of these dielectrics as gate insulators in SWNT TFTs illustrate several attractive characteristics for this application. Their compatibility with polymers used for charge‐transfer doping of SWNTs is also demonstrated through the fabrication of n‐channel SWNT TFTs, low‐voltage p–n diodes, and complementary logic gates.  相似文献   

7.
Low‐voltage, hysteresis‐free, flexible thin‐film‐type electronic systems based on networks of single‐walled carbon nanotubes and bilayer organic–inorganic nanodielectrics are detailed in work by Rogers and co‐workers reported on p. 2355. The cover image shows a schematic array of such thin‐film transistors (TFTs) on a plastic substrate. The structure of the bilayer nanodielectric, which consists of a film of HfO2 formed by atomic layer deposition and an ultrathin layer of epoxy formed by spin‐casting, is also illustrated schematically. High‐capacitance bilayer dielectrics based on atomic‐layer‐deposited HfO2 and spin‐cast epoxy are used with networks of single‐walled carbon nanotubes (SWNTs) to enable low‐voltage, hysteresis‐free, and high‐performance thin‐film transistors (TFTs) on silicon and flexible plastic substrates. These HfO2–epoxy dielectrics exhibit excellent properties including mechanical flexibility, large capacitance (up to ca. 330 nF cm–2), and low leakage current (ca. 10–8 A cm–2); their low‐temperature (ca. 150 °C) deposition makes them compatible with a range of plastic substrates. Analysis and measurements of these dielectrics as gate insulators in SWNT TFTs illustrate several attractive characteristics for this application. Their compatibility with polymers used for charge‐transfer doping of SWNTs is also demonstrated through the fabrication of n‐channel SWNT TFTs, low‐voltage p–n diodes, and complementary logic gates.  相似文献   

8.
Eco‐friendly and low‐cost cellulose nanofiber paper (nanopaper) is a promising candidate as a novel substrate for flexible electron device applications. Here, a thin transparent nanopaper‐based high‐mobility organic thin‐film transistor (OTFT) array is demonstrated for the first time. Nanopaper made from only native wood cellulose nanofibers has excellent thermal stability (>180 °C) and chemical durability, and a low coefficient of thermal expansion (CTE: 5–10 ppm K‐1). These features make it possible to build an OTFT array on nanopaper using a similar process to that for an array on conventional glass. A short‐channel bottom‐contact OTFT is successfully fabricated on the nanopaper by a lithographic and solution‐based process. Owing to the smoothness of the cast‐coated nanopaper surface, a solution processed organic semiconductor film on the nanopaper comprises large crystalline domains with a size of approximately 50–100 μm, and the corresponding TFT exhibits a high hole mobility of up to 1 cm2V‐1 s‐1 and a small hysteresis of below 0.1 V under ambient conditions. The nanopaper‐based OTFT also had excellent flexibility and can be formed into an arbitrary shape. These combined technologies of low‐cost and eco‐friendly paper substrates and solution‐based organic TFTs are promising for use in future flexible electronics application such as flexible displays and sensors.  相似文献   

9.
A facile, high‐resolution patterning process is introduced for fabrication of electrolyte‐gated transistors (EGTs) and circuits using a photo‐crosslinkable ion gel and stencil‐based screen printing. The photo‐crosslinkable gel is based on a triblock copolymer incorporating UV‐sensitive terminal azide functionality and a common ionic liquid. Using this material in conjunction with conventional photolithography and stenciling techniques, well‐defined 0.5–1 μm thick ion gel films are patterned on semiconductor channels as narrow as 10 μm. The resulting n‐type ZnO EGTs display high electron mobility (>2 cm2 Vs?1) and on/off current ratios (>105). Further, EGT‐based inverters exhibit static gains >23 at supply voltages below 3 V, and five‐stage EGT ring oscillator circuits display dynamic propagation delays of 50 μs per stage. In general, the screen printing and photo‐crosslinking strategy provides a clean room‐compatible method to fabricate EGT circuits with improved sensitivity (gain) and computational power (gain × oscillating frequency). Detailed device analysis indicates that significantly shorter delay times, of order 1 μs, can be obtained by improving the ion gel conductance.  相似文献   

10.
A unique way of robustly integrating an elastomer film onto a graphitic anode and then post process it into a solid‐state electrolyte for lithium‐ion battery applications is reported. The mutual solvability of the elastomer and the binder of the graphitic anode (carboxymethyl cellulose, (CMC)) in dimethylformamide facilitates the fusion of the two heterogeneous layers. Dimensional dynamics evolved during the integrated elastomer conversion into a solid electrolyte by liquid electrolyte uptake reveal a notable preferential uniaxial elongation along the normal plane. In contrast, the non‐integrated counterpart elongates along the transversal axis. These elastomer exhibits high ionic conductance (≈10–2 S cm?1). Half‐cells constructed with our electrolyte integrated electrode exhibit magnificent reduction and oxidation (REDOX) behavior. The efficient charge transfer across the snugly confined semi‐solid electrolyte/electrode interface layer leads to a high rate capability of 0.31 mAh cm?2 (41 mAh g?1) at 2 C which is double that of a graphitic conventional half‐cell. Unlike regular graphitic electrodes which degrade over time, this electrode remains robust, thanks to its propensity to retain its inherent elasticity. This work demonstrates a facile and scalable paradigm, in fabrication of flexible electrolytes that can easily be integrated to 3D devices and opens opportunities for developing, structurally conformable batteries of varied geometries.  相似文献   

11.
Zn‐air batteries (ZABs) offer promising commercialization perspectives for stretchable and wearable electronic devices as they are environment‐friendly and have high theoretical energy density. However, current devices suffer from limited energy efficiency and durability because of the sluggish oxygen reduction and evolution reactions kinetics in the air cathode as well as degenerative stretchability of solid‐state electrolytes under highly alkaline conditions. Herein, excellent bifunctional catalytic activity and cycling stability is achieved by using a newly developed Co–N–C nanomaterial with a uniform virus‐like structure, prepared via a facile carbonization of a prussian blue analogue (PBA). Furthermore, a solid‐state dual‐network sodium polyacrylate and cellulose (PANa‐cellulose) based hydrogel electrolyte is synthesized with good alkaline‐tolerant stretchability. A solid‐state fiber‐shaped ZAB fabricated using this hydrogel electrolyte, the virus‐like Co–N–Cs air cathode, and a zinc spring anode display excellent stretchability of up to 500% strain without damage, and outstanding electrochemical performance with 128 mW cm?2 peak power density and good cycling stability for >600 cycles at 2 mA. The facile synthesis strategy demonstrated here opens up a new avenue for developing highly active PBA‐derived catalyst and shows, for the first time, that virus‐like structure can be favorable for electrochemical performance.  相似文献   

12.
“Regioselectivity deposition” method is developed to pattern silver electrodes facilely and efficiently by solution‐process with high resolution (down to 2 μm) on different substrates in A4 paper size. With the help of this method, large‐area, flexible, high‐performance polymer field‐effect transistors based on the silver electrodes and polyimide insulator are fabricated with bottom‐contact configuration by all‐solution processes. The polymer devices exhibit high performance with average field‐effect mobility over 1.0 cm2 V?1 s?1 (the highest mobility up to 1.5 cm2 V?1 s?1) and excellent environmental stability and flexibility, indicating the cost effectiveness of this method for practical applications in organic electronics.  相似文献   

13.
A low contact resistance achieved on top‐gated organic field‐effect transistors by using coplanar and pseudo‐staggered device architectures, as well as the introduction of a dopant layer, is reported. The top‐gated structure effectively minimizes the access resistance from the contact to the channel region and the charge‐injection barrier is suppressed by doping of iron(III)trichloride at the metal/organic semiconductor interface. Compared with conventional bottom‐gated staggered devices, a remarkably low contact resistance of 0.1–0.2 kΩ cm is extracted from the top‐gated devices by the modified transfer line method. The top‐gated devices using thienoacene compound as a semiconductor exhibit a high average field‐effect mobility of 5.5–5.7 cm2 V?1 s?1 and an acceptable subthreshold swing of 0.23–0.24 V dec?1 without degradation in the on/off ratio of ≈109. Based on these experimental achievements, an optimal device structure for a high‐performance organic transistor is proposed.  相似文献   

14.
Fiber‐shaped micro‐supercapacitors (micro‐SCs) have attracted enormous interest in wearable electronics due to high flexibility and weavability. However, they usually present a low energy density because of inhomogeneity and less pores. Here, we demonstrate a microfluidic‐directed strategy to synthesize homogeneous nitrogen‐doped porous graphene fibers. The porous fibers‐based micro‐SCs utilize solid‐state phosphoric acid/polyvinyl alcohol (H3PO4/PVA) and 1‐ethyl‐3‐methylimidazolium tetrafluoroborate/poly(vinylidenefluoride‐co‐hexafluoropropylene) (EMIBF4/PVDF‐HFP) electrolytes, which show significant improvements in electrochemical performances. Ultralarge capacitance (1132 mF cm?2), high cycling‐stability, and long‐term bending‐durability are achieved based on H3PO4/PVA. Additionally, high energy densities of 95.7–46.9 µWh cm?2 at power densities of 1.5–15 W cm?2 are obtained in EMIBF4/PVDF‐HFP. The key to higher performances stems from microfluidic‐controlled fibers with a uniformly porous network, large specific surface area (388.6 m2 g?1), optimal pyridinic nitrogen (2.44%), and high electric conductivity (30785 S m?1) for faster ion diffusion and flooding accommodation. By taking advantage of these remarkable merits, this study integrates micro‐SCs into flexible and fabric substrates to power audio–visual electronics. The main aim is to clarify the important role of microfluidic techniques toward the architecture of electrodes and promote development of wearable electronics.  相似文献   

15.
Core‐chlorinated naphthalene tetracarboxylic diimides (NDIs) with fluoroalkyl chains are synthesized and employed for n‐channel organic thin‐film transistors (OTFTs). Structural analyses of the single crystals and thin films are performed and their charge‐transport behavior is investigated in terms of structure–property relationships. NDIs with two chlorine substituents are shown to exhibit a herringbone structure with a very close π‐plane distance (3.3–3.4 Å), a large π‐stack overlap (slipping angle ca. 62°), and high crystal densities (2.046–2.091 g cm?3). These features result in excellent field‐effect mobilities of up to 1.43 cm2 V?1 s?1 with minimal hysteresis and high on–off ratios (ca. 107) in air. This is similar to the highest n‐channel mobilities in air reported so far. Despite the repulsive interactions of bulky Cl substituents, tetrachlorinated NDIs adopt a slip‐stacked face‐to‐face packing with an interplanar distance of around 3.4 Å, resulting in a high mobility (up to 0.44 cm2 V?1 s?1). The air‐stability of dichlorinated NDIs is superior to that of tetrachlorinated NDIs, despite of their higher LUMO levels. This is closely related to the denser packing of the fluorocarbon chains of dichlorinated NDIs, which serves as a kinetic barrier to the diffusion of ambient oxidants. Interestingly, these NDIs show an optimal performance either on bare SiO2 or on octadecyltrimethoxysilane (OTS)‐treated SiO2, depending on the carbon number of the fluoroalkyl chains. Their synthetic simplicity and processing versatility combined with their high performance make these semiconductors highly promising for practical applications in flexible electronics.  相似文献   

16.
Organic field‐effect transistors suffer from ultra‐high operating voltages in addition to their relative low mobility. A general approach to low‐operating‐voltage organic field‐effect transistors (OFETs) using donor/acceptor buffer layers is demonstrated. P‐type OFETs with acceptor molecule buffer layers show reduced operating voltages (from 60–100 V to 10–20 V), with mobility up to 0.19 cm2 V?1 s?1 and an on/off ratio of 3 × 106. The subthreshold slopes of the devices are greatly reduced from 5–12 V/decade to 1.68–3 V/decade. This favorable combination of properties means that such OFETs can be operated successfully at voltages below 20 V (|VDS| ≤ 20 V, |VGS| ≤ 20 V). This method also works for n‐type semiconductors. The reduced operating voltage and low pinch‐off voltage contribute to the improved ordering of the polycrystalline films, reduced grain boundary resistance, and steeper subthreshold slopes.  相似文献   

17.
Transition metal dichalcogenides (TMDs) layers of molecular thickness, in particular molybdenum disulfide (MoS2), become increasingly important as active elements for mechanically flexible/stretchable electronics owing to their relatively high carrier mobility, wide bandgap, and mechanical flexibility. Although the superior electronic properties of TMD transistors are usually integrated into rigid silicon wafers or glass substrates, the achievement of similar device performance on flexible substrates remains quite a challenge. The present work successfully addresses this challenge by a novel process architecture consisting of a solution‐based polyimide (PI) flexible substrate in which laser‐welded silver nanowires are embedded, a hybrid organic/inorganic gate insulator, and multilayers of MoS2. Transistors fabricated according to this process scheme have decent properties: a field‐effect‐mobility as high as 141 cm2 V?1 s?1 and an Ion/Ioff ratio as high as 5 × 105. Furthermore, no apparent degradation in the device properties is observed under systematic cyclic bending tests with bending radii of 10 and 5 mm. Overall electrical and mechanical results provide potentially important applications in the fabrication of versatile areas of flexible integrated circuitry.  相似文献   

18.
Oriented microstructures are widely found in various biological systems for multiple functions. Such anisotropic structures provide low tortuosity and sufficient surface area, desirable for the design of high‐performance energy storage devices. Despite significant efforts to develop supercapacitors with aligned morphology, challenges remain due to the predefined pore sizes, limited mechanical flexibility, and low mass loading. Herein, a wood‐inspired flexible all‐solid‐state hydrogel supercapacitor is demonstrated by morphologically tuning the aligned hydrogel matrix toward high electrode‐materials loading and high areal capacitance. The highly aligned matrix exhibits broad morphological tunability (47–12 µm), mechanical flexibility (0°–180° bending), and uniform polypyrrole loading up to 7 mm thick matrix. After being assembled into a solid‐state supercapacitor, the areal capacitance reaches 831 mF cm?2 for the 12 µm matrix, which is 259% times of the 47 µm matrix and 403% times of nonaligned matrix. The supercapacitor also exhibits a high energy density of 73.8 µWh cm?2, power density of 4960 µW cm?2, capacitance retention of 86.5% after 1000 cycles, and bending stability of 95% after 5000 cycles. The principle to structurally design the oriented matrices for high electrode material loading opens up the possibility for advanced energy storage applications.  相似文献   

19.
Single‐crystal, 1D nanostructures are well known for their high mobility electronic transport properties. Oxide‐nanowire field‐effect transistors (FETs) offer both high optical transparency and large mechanical conformability which are essential for flexible and transparent display applications. Whereas the “on‐currents” achieved with nanowire channel transistors are already sufficient to drive active matrix organic light emitting diode (AMOLED) displays; it is shown here that incorporation of electrochemical‐gating (EG) to nanowire electronics reduces the operation voltage to ≤2 V. This opens up new possibilities of realizing flexible, portable, transparent displays that are powered by thin film batteries. A composite solid polymer electrolyte (CSPE) is used to obtain all‐solid‐state FETs with outstanding performance; the field‐effect mobility, on/off current ratio, transconductance, and subthreshold slope of a typical ZnO single‐nanowire transistor are 62 cm2/Vs, 107, 155 μS/μm and 115 mV/dec, respectively. Practical use of such electrochemically‐gated field‐effect transistor (EG FET) devices is supported by their long‐term stability in air. Moreover, due to the good conductivity (≈10?2 S/cm) of the CSPE, sufficiently high switching speed of such EG FETs is attainable; a cut‐off frequency in excess of 100 kHz is measured for in‐plane FETs with large gate‐channel distance of >10 μm. Consequently, operation speeds above MHz can be envisaged for top‐gate transistor geometries with insulator thicknesses of a few hundreds of nanometers. The solid polymer electrolyte developed in this study has great potential in future device fabrication using all‐solution processed and high throughput techniques.  相似文献   

20.
Here, a new approach to the layer‐by‐layer solution‐processed fabrication of organic/inorganic hybrid self‐assembled nanodielectrics (SANDs) is reported and it is demonstrated that these ultrathin gate dielectric films can be printed. The organic SAND component, named P‐PAE, consists of polarizable π‐electron phosphonic acid‐based units bound to a polymeric backbone. Thus, the new polymeric SAND (PSAND) can be fabricated either by spin‐coating or blade‐coating in air, by alternating P‐PAE, a capping reagent layer, and an ultrathin ZrOx layer. The new PSANDs thickness vary from 6 to 15 nm depending on the number of organic‐ZrOx bilayers, exhibit tunable film thickness, well‐defined nanostructures, large electrical capacitance (up to 558 nF cm?2), and good insulating properties (leakage current densities as low as 10?6 A cm?2). Organic thin‐film transistors that are fabricated with representative p‐/n‐type organic molecular/polymeric semiconducting materials, function well at low voltages (<3.0 V). Furthermore, flexible TFTs fabricated with PSAND exhibit excellent mechanical flexibility and good stress stability, offering a promising route to low operating voltage flexible electronics. Finally, printable PSANDs are also demonstrated and afford TFTs with electrical properties comparable to those achieved with the spin‐coated PSAND‐based devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号