首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lithium‐oxygen (Li‐O2) batteries are one of the most promising candidates for high‐energy‐density storage systems. However, the low utilization of porous carbon and the inefficient transport of reactants in the cathode limit terribly the practical capacity and, in particular, the rate capability of state‐of‐the‐art Li‐O2 batteries. Here, free‐standing, hierarchically porous carbon (FHPC) derived from graphene oxide (GO) gel in nickel foam without any additional binder is synthesized by a facile and effective in situ sol‐gel method, wherein the GO not only acts as a special carbon source, but also provides the framework of a 3D gel; more importantly, the proper acidity via its intrinsic COOH groups guarantees the formation of the whole structure. Interestingly, when employed as a cathode for Li‐O2 batteries, the capacity reaches 11 060 mA h g?1 at a current density of 0.2 mA cm?2 (280 mA g?1); and, unexpectedly, a high capacity of 2020 mA h g?1 can be obtained even the current density increases ten times, up to 2 mA cm?2 (2.8 A g?1), which is the best rate performance for Li‐O2 batteries reported to date. This excellent performance is attributed to the synergistic effect of the loose packing of the carbon, the hierarchical porous structure, and the high electronic conductivity of the Ni foam.  相似文献   

2.
Maricite NaFePO4 nanodots with minimized sizes (≈1.6 nm) uniformly embedded in porous N‐doped carbon nanofibers (designated as NaFePO4@C) are first prepared by electrospinning for maximized Na‐storage performance. The obtained flexible NaFePO4@C fiber membrane adherent on aluminum foil is directly used as binder‐free cathode for sodium‐ion batteries, revealing that the ultrasmall nanosize effect as well as a high‐potential desodiation process can transform the generally perceived electrochemically inactive maricite NaFePO4 into a highly active amorphous phase; meanwhile, remarkable electrochemical performance in terms of high reversible capacity (145 mA h g?1 at 0.2 C), high rate capability (61 mA h g?1 at 50 C), and unprecedentedly high cyclic stability (≈89% capacity retention over 6300 cycles) is achieved. Furthermore, the soft package Na‐ion full battery constructed by the NaFePO4@C nanofibers cathode and the pure carbon nanofibers anode displays a promising energy density of 168.1 Wh kg?1 and a notable capacity retention of 87% after 200 cycles. The distinctive 3D network structure of very fine NaFePO4 nanoparticles homogeneously encapsulated in interconnected porous N‐doped carbon nanofibers, can effectively improve the active materials' utilization rate, facilitate the electrons/Na+ ions transport, and strengthen the electrode stability upon prolonged cycling, leading to the fascinating Na‐storage performance.  相似文献   

3.
Herein, high‐content N‐doped carbon nanotube (CNT) microspheres (HNCMs) are successfully synthesized through simple spray drying and one‐step pyrolysis. HNCM possesses a hierarchically porous architecture and high‐content N‐doping. In particular, HNCM800 (HNCM pyrolyzed at 800 °C) shows high nitrogen content of 12.43 at%. The porous structure derived from well‐interconnected CNTs not only offers a highly conductive network and blocks diffusion of soluble lithium polysulfides (LiPSs) in physical adsorption, but also allows sufficient sulfur infiltration. The incorporation of N‐rich CNTs provides strong chemical immobilization for LiPSs. As a sulfur host for lithium–sulfur batteries, good rate capability and high cycling stability is achieved for HNCM/S cathodes. Particularly, the HNCM800/S cathode delivers a high capacity of 804 mA h g?1 at 0.5 C after 1000 cycles corresponding to low fading rate (FR) of only 0.011% per cycle. Remarkably, the cathode with high sulfur loading of 6 mg cm?2 still maintains high cyclic stability (capacity of 555 mA h g?1 after 1000 cycles, FR 0.038%). Additionally, CNT/Co3O4 microspheres are obtained by the oxidation of CNTs/Co in the air. The as‐prepared CNT/Co3O4 microspheres are employed as an anode for lithium‐ion batteries and present excellent cycling performance.  相似文献   

4.
In this work, a novel concept of introducing a local built‐in electric field to facilitate lithium‐ion transport and storage within interstitial carbon (C‐) doped nanoarchitectured Co3O4 electrodes for greatly improved lithium‐ion storage properties is demonstrated. The imbalanced charge distribution emerging from the C‐dopant can induce a local electric field, to greatly facilitate charge transfer. Via the mechanism of “surface locking” effect and in situ topotactic conversion, unique sub‐10 nm nanocrystal‐assembled Co3O4 hollow nanotubes (HNTs) are formed, exhibiting excellent structural stability. The resulting C‐doped Co3O4 HNT‐based electrodes demonstrate an excellent reversible capacity ≈950 mA h g?1 after 300 cycles at 0.5 A g?1 and superior rate performance with ≈853 mA h g?1 at 10 A g?1.  相似文献   

5.
For lithium‐selenium batteries, commercial applications are hindered by the inferior electrical conductivity of selenium and the low utilization ratio of the active selenium. Here, we report a new baked‐in‐salt approach to enable Se to better infiltrate into metal‐complex‐derived porous carbon (Se/MnMC‐B). The approach uses the confined, narrow space that is sandwiched between two compact NaCl solid disks, thus avoiding the need for protection with argon or a vacuum environment during processing. The electrochemical properties for both lithium and sodium storage of our Se/MnMC‐B cathode were found to be outstanding. For lithium storage, the Se/MnMC‐B cathode (with 72% selenium loading) exhibited a capacity of 580 mA h g?1 after 1000 cycles at 1 C, and an excellent rate capability was achieved at 20 C and 510 mA h g?1. For sodium storage, a specific capacity of 535 mA h g?1 was achieved at 0.1 C after 150 cycles. These results demonstrate the potential of this approach as a new effective general synthesis method for confining other low melting point materials into a porous carbon matrix.  相似文献   

6.
In this work, a new facile and scalable strategy to effectively suppress the initial capacity fading of iron oxides is demonstrated by reacting with lithium borohydride (LiBH4) to form a B‐containing nanocomposite. Multielement, multiphase B‐containing iron oxide nanocomposites are successfully prepared by ball‐milling Fe2O3 with LiBH4, followed by a thermochemical reaction at 25–350 °C. The resulting products exhibit a remarkably superior electrochemical performance as anode materials for Li‐ion batteries (LIBs), including a high reversible capacity, good rate capability, and long cycling durability. When cycling is conducted at 100 mA g?1, the sample prepared from Fe2O3–0.2LiBH4 delivers an initial discharge capacity of 1387 mAh g?1. After 200 cycles, the reversible capacity remains at 1148 mAh g?1, which is significantly higher than that of pristine Fe2O3 (525 mAh g?1) and Fe3O4 (552 mAh g?1). At 2000 mA g?1, a reversible capacity as high as 660 mAh g?1 is obtained for the B‐containing nanocomposite. The remarkably improved electrochemical lithium storage performance can mainly be attributed to the enhanced surface reactivity, increased Li+ ion diffusivity, stabilized solid‐electrolyte interphase (SEI) film, and depressed particle pulverization and fracture, as measured by a series of compositional, structural, and electrochemical techniques.  相似文献   

7.
ZnCo2O4 has been synthesized by the low‐temperature and cost‐effective urea combustion method. X‐ray diffraction (XRD), HR‐TEM and selected area electron diffraction (SAED) studies confirmed its formation in pure and nano‐phase form with particle size ~ 15–20 nm. Galvanostatic cycling of nano‐ZnCo2O4 in the voltage range 0.005–3.0 V versus Li at 60 mA g–1 gave reversible capacities of 900 and 960 mA h g–1, when cycled at 25 °C and 55 °C, respectively. These values correspond to ~ 8.3 and ~ 8.8 mol of recyclable Li per mole of ZnCo2O4. Almost stable cycling performance was exhibited in the range 5–60 cycles at 60 mA g–1 and at 25 °C with ~ 98 % coulombic efficiency. A similar cycling stability at 55 °C, and good rate‐capability both at 25 and 55 °C were found. The average discharge‐ and charge‐potentials were ~ 1.2 V and ~ 1.9 V, respectively. The ex‐situ‐XRD, ‐HRTEM, ‐SAED and galvanostatic cycling data are consistent with a reaction mechanism for Li‐recyclability involving both de‐alloying‐alloying of Zn and displacement reactions, viz., LiZn ? Zn ? ZnO and Co ? CoO ? Co3O4. For the first time we have shown that both Zn‐ and Co‐ions act as mutual beneficial matrices and reversible capacity contribution of Zn through both alloy formation and displacement reaction takes place to yield stable and high capacities. Thus, nano‐ZnCo2O4 ranks among the best oxide materials with regard to Li‐recyclability.  相似文献   

8.
Carbon‐coated Fe3O4 nanospindles are synthesized by partial reduction of monodispersed hematite nanospindles with carbon coatings, and investigated with scanning electron microscopy, transmission electron microscopy, X‐ray diffraction, and electrochemical experiments. The Fe3O4? C nanospindles show high reversible capacity (~745 mA h g?1 at C/5 and ~600 mA h g?1 at C/2), high coulombic efficiency in the first cycle, as well as significantly enhanced cycling performance and high rate capability compared with bare hematite spindles and commercial magnetite particles. The improvements can be attributed to the uniform and continuous carbon coating layers, which have several functions, including: i) maintaining the integrity of particles, ii) increasing the electronic conductivity of electrodes leading to the formation of uniform and thin solid electrolyte interphase (SEI) films on the surface, and iii) stabilizing the as‐formed SEI films. The results give clear evidence of the utility of carbon coatings to improve the electrochemical performance of nanostructured transition metal oxides as superior anode materials for lithium‐ion batteries.  相似文献   

9.
In this paper, a highly ordered three‐dimensional Co3O4@MnO2 hierarchical porous nanoneedle array on nickel foam is fabricated by a facile, stepwise hydrothermal approach. The morphologies evolution of Co3O4 and Co3O4@MnO2 nanostructures upon reaction times and growth temperature are investigated in detail. Moreover, the as‐prepared Co3O4@MnO2 hierarchical structures are investigated as anodes for both supercapacitors and Li‐ion batteries. When used for supercapacitors, excellent electrochemical performances such as high specific capacitances of 932.8 F g?1 at a scan rate of 10 mV s?1 and 1693.2 F g?1 at a current density of 1 A g?1 as well as long‐term cycling stability and high energy density (66.2 W h kg?1 at a power density of 0.25 kW kg?1), which are better than that of the individual component of Co3O4 nanoneedles and MnO2 nanosheets, are obtained. The Co3O4@MnO2 NAs are also tested as anode material for LIBs for the first time, which presents an improved performance with high reversible capacity of 1060 mA h g?1 at a rate of 120 mA g?1, good cycling stability, and rate capability.  相似文献   

10.
Germanium is considered as a promising anode material because of its comparable lithium and sodium storage capability, but it usually exhibits poor cycling stability due to the large volume variation during lithium or sodium uptake and release processes. In this paper, germanium@graphene nanofibers are first obtained through electrospinning followed by calcination. Then atomic layer deposition is used to fabricate germanium@graphene@TiO2 core–shell nanofibers (Ge@G@TiO2 NFs) as anode materials for lithium and sodium ion batteries (LIBs and SIBs). Graphene and TiO2 can double protect the germanium nanofibers in charge and discharge processes. The Ge@G@TiO2 NFs composite as an anode material is versatile and exhibits enhanced electrochemical performance for LIBs and SIBs. The capacity of the Ge@G@TiO2 NFs composite can be maintained at 1050 mA h g?1 (100th cycle) and 182 mA h g?1 (250th cycle) for LIBs and SIBs, respectively, at a current density of 100 mA g?1, showing high capacity and good cycling stability (much better than that of Ge nanofibers or Ge@G nanofibers).  相似文献   

11.
Layered transition metal oxides (TMOs) are appealing cathode candidates for sodium‐ion batteries (SIBs) by virtue of their facile 2D Na+ diffusion paths and high theoretical capacities but suffer from poor cycling stability. Herein, taking P2‐type Na2/3Ni1/3Mn2/3O2 as an example, it is demonstrated that the hierarchical engineering of porous nanofibers assembled by nanoparticles can effectively boost the reaction kinetics and stabilize the structure. The P2‐Na2/3Ni1/3Mn2/3O2 nanofibers exhibit exceptional rate capability (166.7 mA h g?1 at 0.1 C with 73.4 mA h g?1 at 20 C) and significantly improved cycle life (≈81% capacity retention after 500 cycles) as cathode materials for SIBs. The highly reversible structure evolution and Ni/Mn valence change during sodium insertion/extraction are verified by in operando X‐ray diffraction and ex situ X‐ray photoelectron spectroscopy, respectively. The facilitated electrode process kinetics are demonstrated by an additional study using the electrochemical measurements and density functional theory computations. More impressively, the prototype Na‐ion full battery built with a Na2/3Ni1/3Mn2/3O2 nanofibers cathode and hard carbon anode delivers a promising energy density of 212.5 Wh kg?1. The concept of designing a fibrous framework composed of small nanograins offers a new and generally applicable strategy for enhancing the Na‐storage performance of layered TMO cathode materials.  相似文献   

12.
This study reports the design and fabrication of ultrathin MoS2 nanosheets@metal organic framework‐derived N‐doped carbon nanowall array hybrids on flexible carbon cloth (CC@CN@MoS2) as a free‐standing anode for high‐performance sodium ion batteries. When evaluated as an anode for sodium ion battery, the as‐fabricated CC@CN@MoS2 electrode exhibits a high capacity (653.9 mA h g?1 of the second cycle and 619.2 mA h g?1 after 100 cycles at 200 mA g?1), excellent rate capability, and long cycling life stability (265 mA h g?1 at 1 A g?1 after 1000 cycles). The excellent electrochemical performance can be attributed to the unique 2D hybrid structures, in which the ultrathin MoS2 nanosheets with expanded interlayers can provide shortened ion diffusion paths and favorable Na+ insertion/extraction space, and the porous N‐doped carbon nanowall arrays on flexible carbon cloth are able to improve the conductivity and maintain the structural integrity. Moreover, the N‐doping‐induced defects also make them favorable for the effective storage of sodium ions, which enables the enhanced capacity and rate performance of MoS2.  相似文献   

13.
One of the major challenges to develop high‐performance lithium–oxygen (Li–O2) battery is to find effective cathode catalysts and design porous architecture for the promotion of both oxygen reduction reactions and oxygen evolution reactions. Herein, the synthesis of mesoporous carbon nanocubes as a new cathode nanoarchitecture for Li–O2 batteries is reported. The oxygen electrodes made of mesoporous carbon nanocubes contain numerously hierarchical mesopores and macropores, which can facilitate oxygen diffusion and electrolyte impregnation throughout the electrode, and provide sufficient spaces to accommodate insoluble discharge products. When they are applied as cathode catalysts, the Li–O2 cells deliver discharge capacities of 26 100 mA h g?1 at 200 mA g?1, which is much higher than that of commercial carbon black catalysts. Furthermore, the mesoporous nanocube architecture can also serve as a conductive host structure for other highly efficient catalysts. For instance, the Ru functionalized mesoporous carbon nanocubes show excellent catalytic activities toward oxygen evolution reactions. Li–O2 batteries with Ru functionalized mesoporous carbon nanocube catalysts demonstrate a high charge/discharge electrical energy efficiency of 86.2% at 200 mA g?1 under voltage limitation and a good cycling performance up to 120 cycles at 400 mA g?1 with the curtaining capacity of 1000 mA h g?1.  相似文献   

14.
Self‐standing electrodes are the key to realize flexible Li‐ion batteries. However, fabrication of self‐standing cathodes is still a major challenge. In this work, porous LiCoO2 nanosheet arrays are grown on Au‐coated stainless steel (Au/SS) substrates via a facile “hydrothermal lithiation” method using Co3O4 nanosheet arrays as the template followed by quick annealing in air. The binder‐free and self‐standing LiCoO2 nanosheet arrays represent the 3D cathode and exhibit superior rate capability and cycling stability. In specific, the LiCoO2 nanosheet array electrode can deliver a high reversible capacity of 104.6 mA h g?1 at 10 C rate and achieve a capacity retention of 81.8% at 0.1 C rate after 1000 cycles. By coupling with Li4Ti5O12 nanosheet arrays as anode, an all‐nanosheet array based LiCoO2//Li4Ti5O12 flexible Li‐ion battery is constructed. Benefiting from the 3D nanoarchitectures for both cathode and anode, the flexible LiCoO2//Li4Ti5O12 battery can deliver large specific reversible capacities of 130.7 mA h g?1 at 0.1 C rate and 85.3 mA h g?1 at 10 C rate (based on the weight of cathode material). The full cell device also exhibits good cycling stability with 80.5% capacity retention after 1000 cycles at 0.1 C rate, making it promising for the application in flexible Li‐ion batteries.  相似文献   

15.
The increasing demand for efficient energy storage and conversion devices has aroused great interest in designing advanced materials with high specific surface areas, multiple holes, and good conductivity. Here, we report a new method for fabricating a hierarchical porous carbonaceous aerogel (HPCA) from renewable seaweed aerogel. The HPCA possesses high specific surface area of 2200 m2 g?1 and multilevel micro/meso/macropore structures. These important features make HPCA exhibit a reversible lithium storage capacity of 827.1 mAh g?1 at the current density of 0.1 A g?1, which is the highest capacity for all the previously reported nonheteroatom‐doped carbon nanomaterials. It also shows high specific capacitance and excellent rate performance for electric double layer capacitors (260.6 F g?1 at 1 A g?1 and 190.0 F g?1 at 50 A g?1), and long cycle life with 91.7% capacitance retention after 10 000 cycles at 10 A g?1. The HPCA also can be used as support to assemble Co3O4 nanowires (Co3O4@HPCA) for constructing a high performance pseudocapacitor with the maximum specific capacitance of 1167.6 F g?1 at the current density of 1 A g?1. The present work highlights the first example in using prolifera‐green‐tide as a sustainable source for developing advanced carbon porous aerogels to achieve multiple energy storage.  相似文献   

16.
Binder plays a key role in maintaining the mechanical integrity of electrodes in lithium‐ion batteries. However, the existing binders typically exhibit poor stretchability or low conductivity at large strains, which are not suitable for high‐capacity silicon (Si)‐based anodes undergoing severe volume changes during cycling. Herein, a novel stretchable conductive glue (CG) polymer that possesses inherent high conductivity, excellent stretchablity, and ductility is designed for high‐performance Si anodes. The CG can be stretched up to 400% in volume without conductivity loss and mechanical fracture and thus can accommodate the large volume change of Si nanoparticles to maintain the electrode integrity and stabilize solid electrolyte interface growth during cycling while retaining the high conductivity, even with a high Si mass loading of 90%. The Si‐CG anode has a large reversible capacity of 1500 mA h g?1 for over 700 cycles at 840 mA g?1 with a large initial Coulombic efficiency of 80% and high rate capability of 737 mA h g?1 at 8400 mA g?1. Moreover, the Si‐CG anode demonstrates the highest achieved areal capacity of 5.13 mA h cm?2 at a high mass loading of 2 mg cm?2. The highly stretchable CG provides a new perspective for designing next‐generation high‐capacity and high‐power batteries.  相似文献   

17.
A facile two‐step strategy involving a polyol method and subsequent thermal annealing treatment is successfully developed for the large‐scale preparation of ZnCo2O4 various hierarchical micro/nanostructures (twin mcrospheres and microcubes) without surfactant assistance. To the best of our knowledge, this is the first report on the synthesis of ZnCo2O4 mesoporous twin microspheres and microcubes. More significantly, based on the effect of the reaction time on the morphology evolution of the precursor, a brand‐new crystal growth mechanism, multistep splitting then in situ dissolution recrystallization accompanied by morphology and phase change, is first proposed to understand the formation of the 3D twin microshperes, providing new research opportunity for investigating the formation of novel micro/nanostructures. When evaluated as anode materials for lithium‐ion batteries (LIBs), ZnCo2O4 hierarchical microstructures exhibit superior capacity retention, excellent cycling stability at the 5 A g?1 rate for 2000 cycles. Surprisingly, the ZnCo2O4 twin microspheres show an exceptionally high rate capability up to the 10 A g?1 rate. It should be noted that such super‐high rate performance and cycling stability at such high charge/discharge rates are significantly higher than most work previously reported on ZnCo2O4 micro/nanostructures and ZnCo2O4‐based heterostructures. The ZnCo2O4 3D hierarchical micro/nanostructures demonstrate the great potential as negative electrode materials for high‐performance LIBs.  相似文献   

18.
The lithium metal anode is one of the most promising anodes for next‐generation high‐energy‐density batteries. However, the severe growth of Li dendrites and large volume expansion leads to rapid capacity decay and shortened lifetime, especially in high current density and high capacity. Herein, a soft 3D Au nanoparticles@graphene hybrid aerogel (Au? GA) as a lithiophilic host for lithium metal anode is proposed. The large surface area and interconnected conductive pathways of the Au? GA significantly decrease the local current density of the electrode, enabling uniform Li deposition. Furthermore, the 3D porous structure effectively accommodates the large volume expansion during Li plating/stripping, and the LixAu alloy serves as a solid solution buffer layer to completely eliminate the Li nucleation over‐potential. Symmetric cells can stably cycle at 8 mA cm?2 for 8 mAh cm?2 and exhibit ultra‐long cycling: 1800 h at 2 mA cm?2 for 2 mAh cm?2, and 1200 h at 4 mA cm?2 for 4 mAh cm?2, with low over‐potential. Full cells assemble with a Cu@Au? GA? Li anode and LiFePO4 cathode, can sustain a high rate of 8 C, and retain a high capacity of 59.6 mAh g?1 after 1100 cycles at 2 C.  相似文献   

19.
Although abundant germanium (Ge)‐based anode materials have been explored to obtain high specific capacity, high rate performance, and long charge/discharge lifespans for lithium‐ion batteries (LIBs), their performances are still far from satisfactory due to the intrinsic defects of Ge and the relatively intricate anode structure. To work out these issues, a 3D ordered porous N‐doped carbon framework with Ge quantum dots uniformly embedded (3DOP Ge@N? C) as a binder‐free anode for LIBs via a facile polystyrene colloidal nanospheres template‐confined strategy is proposed. This unique structure not only facilitates Li‐ion diffusion and electron transport that can guarantee rapid de/alloying reaction, but also alleviates the huge volume changes during reactions and improves cycling stability. Notably, the resulting anode delivers a high specific reversible capacity (≈1160 mA h g?1 at 1 A g?1), superior rate properties (exceeding 500 mA h g?1 at 40 A g?1), and excellent cycling stability (over 90% capacity retention after 1200 cycles even at 5 A g?1). Furthermore, both the 3DOP Ge@N? C anode with high areal mass loading (up to 8 mg cm?2) and the full cell coupled with LiFePO4 cathode display high capacity and cycling stability, further indicative of the favorable real‐life application prospects for high‐energy LIBs.  相似文献   

20.
Hierarchical nanocomposites rationally designed in component and structure, are highly desirable for the development of lithium‐ion batteries, because they can take full advantages of different components and various structures to achieve superior electrochemical properties. Here, the branched nanocomposite with β‐MnO2 nanorods as the back‐bone and porous α‐Fe2O3 nanorods as the branches are synthesized by a high‐temperature annealing of FeOOH epitaxially grown on the β‐MnO2 nanorods. Since the β‐MnO2 nanorods grow along the four‐fold axis, the as‐produced branches of FeOOH and α‐Fe2O3 are aligned on their side in a nearly four‐fold symmetry. This synthetic process for the branched nanorods built by β‐MnO2/α‐Fe2O3 is characterized. The branched nanorods of β‐MnO2/α‐Fe2O3 present an excellent lithium‐storage performance. They exhibit a reversible specific capacity of 1028 mAh g?1 at a current density of 1000 mA g?1 up to 200 cycles, much higher than the building blocks alone. Even at 4000 mA g?1, the reversible capacity of the branched nanorods could be kept at 881 mAh g?1. The outstanding performances of the branched nanorods are attributed to the synergistic effect of different components and the hierarchical structure of the composite. The disclosure of the correlation between the electrochemical properties and the structure/component of the nanocomposites, would greatly benefit the rational design of the high‐performance nanocomposites for lithium ion batteries, in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号