首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ambipolar organic field‐effect transistors (OFETs) are produced, based on organic heterojunctions fabricated by a two‐step vacuum‐deposition process. Copper phthalocyanine (CuPc) deposited at a high temperature (250 °C) acts as the first (p‐type component) layer, and hexadecafluorophthalocyaninatocopper (F16CuPc) deposited at room temperature (25 °C) acts as the second (n‐type component) layer. A heterojunction with an interpenetrating network is obtained as the active layer for the OFETs. These heterojunction devices display significant ambipolar charge transport with symmetric electron and hole mobilities of the order of 10–4 cm2 V–1 s–1 in air. Conductive channels are at the interface between the F16CuPc and CuPc domains in the interpenetrating networks. Electrons are transported in the F16CuPc regions, and holes in the CuPc regions. The molecular arrangement in the heterojunction is well ordered, resulting in a balance of the two carrier densities responsible for the ambipolar electrical characteristics. The thin‐film morphology of the organic heterojunction with its interpenetrating network structure can be controlled well by the vacuum‐deposition process. The structure of interpenetrating networks is similar to that of the bulk heterojunction used in organic photovoltaic cells, therefore, it may be helpful in understanding the process of charge collection in organic photovoltaic cells.  相似文献   

2.
The highly photosensitive characteristics of organic thin‐film transistors (OTFTs) made using soluble star‐shaped oligothiophenes with four‐armed π‐conjugation paths, 4(HPBT)‐benzene and 4(HP3T)‐benzene molecules having a relatively high quantum yield, are reported. 4(HPBT)‐benzene‐based organic phototransistors (OPTs) exhibited high photosensitivity (~2500–4300 A W?1) even with low optical powers (~6.8–30 µW cm?2) at zero gate bias. The measured photosensitivity of the devices was much higher than that of inorganic single‐crystal Si‐based phototransistors, as well as that of other OPTs reported earlier. With the highly photosensitive characteristics of the 4(HPBT)‐benzene‐based OPTs, a high ratio of the on and off current switching of ~4 × 104 with low optical power and low gate bias was observed. The slow relaxation of the photoinduced charges and charge‐trapping phenomena at the interface could lead to a reproducible memory operation for 4(HPBT)‐benzene‐based OPTs.  相似文献   

3.
Van der Waals (vdW) heterostructures composing of organic molecules with inorganic 2D crystals open the door to fabricate various promising hybrid devices. Here, a fully ordered organic self-assembled monolayer (SAM) to construct hybrid organic–inorganic vdW heterojunction phototransistors for highly sensitive light detection is used. The heterojunctions, formed by layering MoS2 monolayer crystals onto organic [12-(benzo[b]benzo[4,5]thieno[2,3-d]thiophen-2-yl)dodecyl)]phosphonic acid SAM, are characterized by Raman and photoluminescence spectroscopy as well as Kelvin probe force microscopy. Remarkably, this vdW heterojunction transistor exhibits a superior photoresponsivity of 475 A W−1 and enhanced external quantum efficiency of 1.45 × 105%, as well as an extremely low dark photocurrent in the pA range. This work demonstrates that hybridizing SAM with 2D materials can be a promising strategy for fabricating diversified optoelectronic devices with unique properties.  相似文献   

4.
Ambipolar thin‐film transistors based on a series of air‐stable, solution‐processed blends of an n‐type polymer poly(benzobisimidazobenzophenanthroline) (BBL) and a p‐type small molecule, copper phthalocyanine (CuPc) are demonstrated, where all fabrication and measurements are performed under ambient conditions. The hole mobilities are in the range of 6.0 × 10–6 to 2.0 × 10–4 cm2 V–1 s–1 and electron mobilities are in the range of 2.0 × 10–6 to 3.0 × 10–5 cm2 V–1 s–1, depending on the blend composition. UV‐vis spectroscopy and electron diffraction show crystallization of CuPc in the metastable α‐crystal form within the semicrystalline BBL matrix. These CuPc domains develop into elongated ribbon‐like crystalline nanostructures when the blend films are processed in methanol, but not when they are processed in water. On methylene chloride vapor annealing of the blend films, a phase transformation of CuPc from the α‐form to the β‐form is observed, as shown by optical absorption spectroscopy and electron diffraction. Ambipolar charge transport is only observed in the blend films where CuPc crystallized in the elongated ribbon‐like nanostructures (α‐form). Ambipolar behavior is not observed with CuPc in the β‐polymorph. Unipolar hole mobilities as high as 2.0 × 10–3 cm2 V–1 s–1 are observed in these solution‐processed blend field‐effect transistors (FETs) on prolonged treatment in methanol, comparable to previously reported hole mobilities in thermally evaporated CuPc FETs. These results show that ambipolar charge transport and carrier mobilities in multicomponent organic semiconductors are intricately related to the phase‐separated nanoscale and crystalline morphology.  相似文献   

5.
Hybrid materials in optoelectronic devices can generate new functionality or provide synergistic effects that enhance the properties of each component. Here, high‐performance phototransistors with broad spectral responsivity in UV–vis–near‐infrared (NIR) regions, using gold nanorods (Au NRs)‐decorated n‐type organic semiconductor and N ,N ′‐bis(2‐phenylethyl)‐perylene‐3,4:9,10‐tetracarboxylic diimide (BPE‐PTCDI) nanowires (NWs) are reported. By way of the synergistic effect of the excellent photo‐conducting characteristics of single‐crystalline BPE‐PTCDI NW and the light scattering and localized surface plasmon resonances (LSPR) of Au NRs, the hybrid system provides new photo‐detectivity in the NIR spectral region. In the UV–vis region, hybrid nanomaterial‐based phototransistors exhibit significantly enhanced photo‐responsive properties with a photo‐responsivity (R ) of 7.70 × 105 A W?1 and external quantum efficiency (EQE) of 1.42 × 108% at the minimum light intensity of 2.5 µW cm?2, which are at least tenfold greater than those of pristine BPE‐PTCDI NW‐based ones and comparable to those of high‐performance inorganic material‐based devices. While a pristine BPE‐PTCDI NW‐based photodetector is insensitive to the NIR spectral region, the hybrid NW‐based phototransistor shows an R of 10.7 A W?1 and EQE of 1.35 × 103% under 980 nm wavelength‐NIR illumination. This work demonstrates a viable approach to high‐performance photo‐detecting systems with broad spectral responsivity.  相似文献   

6.
The relationship between the performance characteristics of organic field‐effect transistors (OFETs) with 2,5‐bis(4‐biphenylyl)bithiophene/copper hexadecafluorophthalocyanine (BP2T/F16CuPc) heterojunctions and the thickness of the BP2T bottom layer is investigated. Three operating modes (n‐channel, ambipolar, and p‐channel) are obtained by varying the thickness of the organic semiconductor layer. The changes in operating mode are attributable to the morphology of the film and the heterojunction effect, which also leads to an evolution of the field‐effect mobility with increasing film thickness. In BP2T/F16CuPc heterojunctions the mobile charge carriers accumulate at both sides of the heterojunction interface, with an accumulation layer thickness of ca. 10 nm. High field‐effect mobility values can be achieved in continuous and flat films that exhibit the heterojunction effect.  相似文献   

7.
Oligoarenes as an alternative group of promising semiconductors in organic optoelectronics have attracted much attention. However, high‐performance and low‐cost opto‐electrical devices based on linear asymmetric oligoarenes with nano/microstructures are still rarely studied because of difficulties both in synthesis and high‐quality nano/microstructure growth. Here, a novel linear asymmetric oligoarene 6‐methyl‐anthra[2,3‐b]benzo[d]thiophene (Me‐ABT) is synthesized and its high‐quality microribbons are grown by a solution process. The solution of Me‐ABT exhibits a moderate fluorescence quantum yield of 0.34, while the microribbons show a glaucous light emission. Phototransistors based on an individual Me‐ABT microribbon prepared by a solution‐phase self‐assembly process showed a high mobility of 1.66 cm2 V?1 s?1, a large photoresponsivity of 12 000 A W?1, and a photocurrent/dark‐current ratio of 6000 even under low light power conditions (30 µW cm?2). The measured photoresponsivity of the devices is much higher than that of inorganic single‐crystal silicon thin film transistors. These studies should boost the development of the organic semiconductors with high‐quality microstructures for potential application in organic optoelectronics.  相似文献   

8.
A series of new organic semiconductors for organic thin‐film transistors using dithieno[3,2‐b:2′,3′‐d]thiophene as the core have been synthesized. In work reported by Liu, Zhu, and co‐workers on p. 426, the phenyl‐substituted compound exhibited a high mobility of 0.42 cm2 V–1 s–1 and an on/off ratio of 5 × 106. Weekly shelf‐life tests of the transistors based on the bis(diphenyl)‐substituted thiophene under ambient conditions showed that the mobility was almost unchanged after more than two months, demonstrating potential for applications in future organic electronics. A series of new organic semiconductors for organic thin‐film transistors (OTFTs) using dithieno[3,2‐b:2′,3′‐d]thiophene as the core are synthesized. Their electronic and optical properties are investigated using scanning electron microscopy (SEM), X‐ray diffraction (XRD), UV‐vis and photoluminescence spectroscopies, thermal gravimetric analysis (TGA), and differential scanning calorimetry (DSC). The compounds exhibit an excellent field‐effect performance with a high mobility of 0.42 cm2 V–1 s–1 and an on/off ratio of 5 × 106. XRD patterns reveal these films, grown by vacuum deposition, to be highly crystalline, and SEM reveals well‐interconnected, microcrystalline domains in these films at room temperature. TGA and DSC demonstrate that the phenyl‐substituted compounds possess excellent thermal stability. Furthermore, weekly shelf‐life tests (under ambient conditions) of the OTFTs based on the phenyl‐substituted compounds show that the mobility for the bis(diphenyl)‐substituted thiophene was almost unchanged for more than two months, indicating a high environmental stability.  相似文献   

9.
Highly flexible organic nanofiber phototransistors are fabricated on a highly flexible poly(ethylene terephthalate) (PET) textile/poly(dimethylsiloxane) (PDMS) composite substrate. Organic nanofibers are obtained by electrospinning, using a mixture of poly(3,3″′‐didodecylquarterthiophene) (PQT‐12) and poly(ethylene oxide) (PEO) as the semiconducting polymer and processing aid, respectively. PDMS is used as both a buffer layer for flattening the PET textile and a dielectric layer in the bottom‐gate bottom‐contact device configuration. PQT‐12:PEO nanofibers can be well‐aligned on the textile composite substrate by electrospinning onto a rotating drum collector. The nanofiber phototransistors fabricated on the PET/PDMS textile composite substrate show highly stable device performance (on‐current retention up to 82.3 (±6.7)%) under extreme bending conditions, with a bending radius down to 0.75 mm and repeated tests over 1000 cycles, while those prepared on film‐type PET and PDMS‐only substrates exhibit much poorer performances. The photoresponsive behaviors of PQT‐12:PEO nanofiber phototransistors have been investigated under light irradiation with different wavelengths. The maximum photoresponsivity, photocurrent/dark‐current ratio, and external quantum efficiency under blue light illumination were 930 mA W?1, 2.76, and 246%, respectively. Furthermore, highly flexible 10 × 10 photosensor arrays have been fabricated which are able to detect incident photonic signals with high resolution. The flexible photosensors described herein have high potential for applications as wearable photosensors.  相似文献   

10.
The photoelectronic characteristics of single‐crystalline nanowire organic phototransistors (NW‐OPTs) are studied using a high‐performance n‐channel organic semiconductor, N,N′‐bis(2‐phenylethyl)‐perylene‐3,4:9,10‐tetracarboxylic diimide (BPE‐PTCDI), as the photoactive layer. The optoelectronic performances of the NW‐OPTs are analyzed by way of their current–voltage (IV) characteristics on irradiation at different wavelengths, and comparison with corresponding thin‐film organic phototransistors (OPTs). Significant enhancement in the charge‐carrier mobility of NW‐OPTs is observed upon light irradiation as compared with when performed in the dark. A mobility enhancement is observed when the incident optical power density increases and the wavelength of the light source matches the light‐absorption range of the photoactive material. The photoswitching ratio is strongly dependent upon the incident optical power density, whereas the photoresponsivity is more dependent on matching the light‐source wavelength with the maximum absorption range of the photoactive material. BPE‐PTCDI NW‐OPTs exhibit much higher external quantum efficiency (EQE) values (≈7900 times larger) than thin‐film OPTs, with a maximum EQE of 263 000%. This is attributed to the intrinsically defect‐free single‐crystalline nature of the BPE‐PTCDI NWs. In addition, an approach is devised to analyze the charge‐transport behaviors using charge accumulation/release rates from deep traps under on/off switching of external light sources.  相似文献   

11.
Simultaneous introduction of short‐range repulsive interactions between dissimilar colloidal particles and attractive interactions between like particles provides a general new route to fabricating self‐organizing bipolar devices. By identifying combinations of conductive device materials between which short‐range repulsive forces exist in the presence of an intervening liquid, electrochemical junctions can be self‐formed, as reported by Chiang and co‐workers on p. 379. The relationship between the performance characteristics of organic field‐effect transistors (OFETs) with 2,5‐bis(4‐biphenylyl)bithiophene/copper hexadecafluorophthalocyanine (BP2T/F16CuPc) heterojunctions and the thickness of the BP2T bottom layer is investigated. Three operating modes (n‐channel, ambipolar, and p‐channel) are obtained by varying the thickness of the organic semiconductor layer. The changes in operating mode are attributable to the morphology of the film and the heterojunction effect, which also leads to an evolution of the field‐effect mobility with increasing film thickness. In BP2T/F16CuPc heterojunctions the mobile charge carriers accumulate at both sides of the heterojunction interface, with an accumulation layer thickness of ca. 10 nm. High field‐effect mobility values can be achieved in continuous and flat films that exhibit the heterojunction effect.  相似文献   

12.
2D conjugated metal‐organic frameworks (2D c‐MOFs) are emerging as a novel class of conductive redox‐active materials for electrochemical energy storage. However, developing 2D c‐MOFs as flexible thin‐film electrodes have been largely limited, due to the lack of capability of solution‐processing and integration into nanodevices arising from the rigid powder samples by solvothermal synthesis. Here, the synthesis of phthalocyanine‐based 2D c‐MOF (Ni2[CuPc(NH)8]) nanosheets through ball milling mechanical exfoliation method are reported. The nanosheets feature with average lateral size of ≈160 nm and mean thickness of ≈7 nm (≈10 layers), and exhibit high crystallinity and chemical stability as well as a p‐type semiconducting behavior with mobility of ≈1.5 cm2 V?1 s?1 at room temperature. Benefiting from the ultrathin feature, the nanosheets allow high utilization of active sites and facile solution‐processability. Thus, micro‐supercapacitor (MSC) devices are fabricated mixing Ni2[CuPc(NH)8] nanosheets with exfoliated graphene, which display outstanding cycling stability and a high areal capacitance up to 18.9 mF cm?2; the performance surpasses most of the reported conducting polymers‐based and 2D materials‐based MSCs.  相似文献   

13.
π‐conjugated polymers based on the electron‐neutral alkoxy‐functionalized thienyl‐vinylene (TVTOEt) building‐block co‐polymerized, with either BDT (benzodithiophene) or T2 (dithiophene) donor blocks, or NDI (naphthalenediimide) as an acceptor block, are synthesized and characterized. The effect of BDT and NDI substituents (alkyl vs alkoxy or linear vs branched) on the polymer performance in organic thin film transistors (OTFTs) and all‐polymer organic photovoltaic (OPV) cells is reported. Co‐monomer selection and backbone functionalization substantially modifies the polymer MO energies, thin film morphology, and charge transport properties, as indicated by electrochemistry, optical spectroscopy, X‐ray diffraction, AFM, DFT calculations, and TFT response. When polymer P7 is used as an OPV acceptor with PTB7 as a donor, the corresponding blend yields TFTs with ambipolar mobilities of μe = 5.1 × 10?3 cm2 V–1 s–1 and μh = 3.9 × 10?3 cm2 V–1 s–1 in ambient, among the highest mobilities reported to date for all‐polymer bulk heterojunction TFTs, and all‐polymer solar cells with a power conversion efficiency (PCE) of 1.70%, the highest reported PCE to date for an NDI‐polymer acceptor system. The stable transport characteristics in ambient and promising solar cell performance make NDI‐type materials promising acceptors for all‐polymer solar cell applications.  相似文献   

14.
A new type of nonvolatile ferroelectric poly(vinylidene fluoride‐co‐trifluoroethylene) (P(VDF‐TrFE)) memory based on an organic thin‐film transistor (OTFT) with a single crystal of tri‐isopropylsilylethynyl pentacene (TIPS‐PEN) as the active layer is developed. A bottom‐gate OTFT is fabricated with a thin P(VDF‐TrFE) film gate insulator on which a one‐dimensional ribbon‐type TIPS‐PEN single crystal, grown via a solvent‐exchange method, is positioned between the Au source and drain electrodes. Post‐thermal treatment optimizes the interface between the flat, single‐crystalline ab plane of TIPS‐PEN and the polycrystalline P(VDF‐TrFE) surface with characteristic needle‐like crystalline lamellae. As a consequence, the memory device exhibits a substantially stable source–drain current modulation with an ON/OFF ratio hysteresis greater than 103, which is superior to a ferroelectric P(VDF‐TrFE) OTFT that has a vacuum‐evaporated pentacene layer. Data retention longer than 5 × 104 s is additionally achieved in ambient conditions by incorporating an interlayer between the gate electrode and P(VDF‐TrFE) thin film. The device is environmentally stable for more than 40 days without additional passivation. The deposition of a seed solution of TIPS‐PEN on the chemically micropatterned surface allows fabrication arrays of TIPS‐PEN single crystals that can be potentially useful for integrated arrays of ferroelectric polymeric TFT memory.  相似文献   

15.
A series of new organic semiconductors for organic thin‐film transistors (OTFTs) using dithieno[3,2‐b:2′,3′‐d]thiophene as the core are synthesized. Their electronic and optical properties are investigated using scanning electron microscopy (SEM), X‐ray diffraction (XRD), UV‐vis and photoluminescence spectroscopies, thermal gravimetric analysis (TGA), and differential scanning calorimetry (DSC). The compounds exhibit an excellent field‐effect performance with a high mobility of 0.42 cm2 V–1 s–1 and an on/off ratio of 5 × 106. XRD patterns reveal these films, grown by vacuum deposition, to be highly crystalline, and SEM reveals well‐interconnected, microcrystalline domains in these films at room temperature. TGA and DSC demonstrate that the phenyl‐substituted compounds possess excellent thermal stability. Furthermore, weekly shelf‐life tests (under ambient conditions) of the OTFTs based on the phenyl‐substituted compounds show that the mobility for the bis(diphenyl)‐substituted thiophene was almost unchanged for more than two months, indicating a high environmental stability.  相似文献   

16.
The bulk‐ionized photoconductivity of C60 is reported as an origin of the bias‐dependent linear change of the photocurrent in copper phthalocyanine (CuPc)/C60 planar heterojunction solar cells, based on the observation of the variation of the bias‐dependent photocurrent on excitation wavelengths and the thickness‐dependent photocurrent of the C60 layer. A theoretical model, which is a combination of the Braun‐Onsager model for the dissociation of excitons at the donor/acceptor interface and the Onsager model for the bulk ionization of excitons in the C60 layer, describes the bias‐dependent photocurrent in the devices very well. The bulk‐ionized photoconductivity of C60 must generally contribute to the photocurrent in organic photovoltaics, since fullerene and fullerene derivatives are widely used in these devices.  相似文献   

17.
Solution‐processed small‐molecule bulk heterojunction (BHJ) ambipolar organic thin‐film transistors are fabricated based on a combination of [2‐phenylbenzo[d,d']thieno[3,2‐b;4,5‐b']dithiophene (P‐BTDT) : 2‐(4‐n‐octylphenyl)benzo[d,d ']thieno[3,2‐b;4,5‐b']dithiophene (OP‐BTDT)] and C60. Treating high electrical performance vacuum‐deposited P‐BTDT organic semiconductors with a newly developed solution‐processed organic semiconductor material, OP‐BTDT, in an optimized ratio yields a solution‐processed p‐channel organic semiconductor blend with carrier mobility as high as 0.65 cm2 V?1 s?1. An optimized blending of P‐BTDT:OP‐BTDT with the n‐channel semiconductor, C60, results in a BHJ ambipolar transistor with balanced carrier mobilities for holes and electrons of 0.03 and 0.02 cm2 V?1 s?1, respectively. Furthermore, a complementary‐like inverter composed of two ambipolar thin‐film transistors is demonstrated, which achieves a gain of 115.  相似文献   

18.
We have fabricated organic field‐effect transistors based on thin films of 2,7‐carbazole oligomeric semiconductors 1,4‐bis(vinylene‐(N‐hexyl‐2‐carbazole))phenylene (CPC), 1,4‐bis(vinylene‐(N′‐methyl‐7′‐hexyl‐2′‐carbazole))benzene (RCPCR), N‐hexyl‐2,7‐bis(vinylene‐(N‐hexyl‐2‐carbazole))carbazole (CCC), and N‐methyl‐2,7‐bis(vinylene‐(7‐hexyl‐N‐methyl‐2‐carbazole))carbazole (RCCCR). The organic semiconductors are deposited by thermal evaporation on bare and chemically modified silicon dioxide surfaces (SiO2/Si) held at different temperatures varying from 25 to 200 °C during deposition. The resulting thin films have been characterized using UV‐vis and Fourier‐transform infrared spectroscopies, scanning electron microscopy, and X‐ray diffraction, and the observed top‐contact transistor performances have been correlated with thin‐film properties. We found that these new π‐conjugated oligomers can form highly ordered structures and reach high hole mobilities. Devices using CPC as the active semiconductor have exhibited mobilities as high as 0.3 cm2 V–1 s–1 with on/off current ratios of up to 107. These features make CPC and 2,7‐carbazolenevinylene‐based oligomers attractive candidates for device applications.  相似文献   

19.
Novel blue‐light‐emitting materials, 9,10‐bis(1,2‐diphenyl styryl)anthracene (BDSA) and 9,10‐bis(4′‐triphenylsilylphenyl)anthracene (BTSA), which are composed of an anthracene molecule as the main unit and a rigid and bulky 1,2‐diphenylstyryl or triphenylsilylphenyl side unit, have been designed and synthesized. Theoretical calculations on the three‐dimensional structures of BDSA and BTSA show that they have a non‐coplanar structure and inhibited intermolecular interactions, resulting in a high luminescence efficiency and good color purity. By incorporating these new, non‐doped, blue‐light‐emitting materials into a multilayer device structure, it is possible to achieve luminance efficiencies of 1.43 lm W–1 (3.0 cd A–1 at 6.6 V) for BDSA and 0.61 lm W–1 (1.3 cd A–1 at 6.7 V) for BTSA at 10 mA cm–2. The electroluminescence spectrum of the indium tin oxide (ITO)/copper phthalocyanine (CuPc)/1,4‐bis[(1‐naphthylphenyl)‐amino]biphenyl (α‐NPD)/BDSA/tris(9‐hydroxyquinolinato)aluminum (Alq3)/LiF/Al device shows a narrow emission band with a full width at half maximum (FWHM) of 55 nm and a λmax = 453 nm. The FWHM of the ITO/CuPc/α‐NPD/BTSA/Alq3/LiF/Al device is 53 nm, with a λmax = 436 nm. Regarding color, the devices showed highly pure blue emission ((x,y) = (0.15,0.09) for BTSA, (x,y) = (0.14,0.10) for BDSA) at 10 mA cm–2 in Commission Internationale de l'Eclairage (CIE) chromaticity coordinates.  相似文献   

20.
By changing the packing motif of the conjugated cores and the thin‐film microstructures, unipolar organic semiconductors may be converted into ambipolar materials. A combined experimental and theoretical investigation is conducted on the thin‐film organic field‐effect transistors (OFETs) of three organic semiconductors that have the same conjugated core structure of s‐indaceno[1,2‐b:5,6‐b′]dithiophene‐4,9‐dione but with different n‐alkyl groups. The optical and electrochemical measurements suggest that the three organic semiconductors have very similar energy levels; however, their OFETs exhibit dramatically different transport characteristics. Transistors based on compound 1a or 1c show ambipolar transport properties, while those based on compound 1b show p‐type unipolar behavior. Specifically, compound 1c is characterized as a good ambipolar semiconductor with the highest electron mobility of 0.22 cm2 V?1 s?1 and the highest hole mobility of 0.03 cm2 V?1 s?1. Complementary metal oxide semiconductor (CMOS) inverters incorporated with compound 1c show sharp inversions with high gains above 50. Theoretical investigations reveal that the drastic difference in the transport properties of the three materials is due to the difference in their molecular packing and film microstructures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号