首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increasing exciton utilization and reducing exciton annihilation are crucial to achieve high performance of organic light‐emitting diodes (OLEDs), which greatly depend on molecular engineering of emitters and hosts. A novel luminogen (SBF‐BP‐DMAC) is synthesized and characterized. Its crystal and electronic structures, thermal stability, electrochemical behavior, carrier transport, photoluminescence, and electroluminescence are investigated. SBF‐BP‐DMAC exhibits enhanced photoluminescence and promotes delayed fluorescence in solid state and bipolar carrier transport ability, and thus holds multifunctionality of emitter and host for OLEDs. Using SBF‐BP‐DMAC as an emitter, the nondoped OLEDs exhibit maximum electroluminescence (EL) efficiencies of 67.2 cd A?1, 65.9 lm W?1, and 20.1%, and the doped OLEDs provide maximum EL efficiencies of 79.1 cd A?1, 70.7 lm W?1, and 24.5%. A representative orange phosphor, Ir(tptpy)2acac, is doped into SBF‐BP‐DMAC for OLED fabrication, giving rise to superior EL efficiencies of 88.0 cd A?1, 108.0 lm W?1, and 26.8% for orange phosphorescent OLEDs, and forward‐viewing EL efficiencies of 69.3 cd A?1, 45.8 lm W?1, and 21.0% for two‐color hybrid warm‐white OLEDs. All of these OLEDs can retain high EL efficiencies at high luminance, with very small efficiency roll‐offs. The outstanding EL performance demonstrates the great potentials of SBF‐BP‐DMAC in practical display and lighting devices.  相似文献   

2.
Organic single crystals have attracted great attention because of their advantages of high charge‐carrier mobility, high chemical purity, and potential for flexible optoelectronic devices. However, their intrinsic properties of sensitive to organic solvent and fragile result in a difficulty in the fabrication of the organic crystal‐based devices. In this work, a simple and non‐destructive technique of template stripping is employed to fabricate single‐crystal‐based organic light‐emitting devices (OLEDs). Efficient and uniform carrier injection induced by an improved contact between crystals and both top and bottom electrodes is realized, so that a homogeneous and bright electroluminescence (EL) are obtained. Highly polarized EL and even white emission is also observed. Moreover, the crystal‐based OLEDs exhibit good flexibility, and keep stable EL under a small bending radius and after repeated bending. It is expectable that this technique would support broad applications of the organic single crystals in the crystal‐based optoelectronic devices.  相似文献   

3.
Organic single-crystalline semiconductors have drawn significant attention in the area of organic electronic and optoelectronic devices due to their superiorities of highly ordered structure, high carrier mobility and low impurity content. Molecular doping technique has made great progress in improving device performance via optimizing the optical and electrical properties of organic semiconductors. In particular, this technique has been attempted by taking fluorescent dye-molecules as the emissive dopants to tune emission color and improve device performance of organic single crystals. Up to now, there are few reports about the use of molecular doping in organic single crystals to optimize their intrinsic electrical properties. Here, we have introduced the controllable molecular doping as a feasible approach toward manipulating charge carrier transport properties of organic single crystals. Upon optimization of doping concentration, balanced carrier transport can be realized in 5,5′-bis(4-trifluoromethyl phenyl) [2,2’] bithiophene (P2TCF3)-doped 1,4-bis(4-methylstyryl) benzene (BSB–Me) crystals. Organic light-emitting devices (OLEDs) based on these doped crystals achieve a maximum luminance of 423 cd/m2 and current efficiency of 0.48 cd/A. It demonstrates that high-efficiency crystal-based OLEDs are of great significance for the development of organic electronics, especially for display and lighting applications.  相似文献   

4.
Organic single crystals with much higher carrier mobility and stability compared to the amorphous organic materials have shown great potential in electronic and optoelectronic devices. However, their applications in white organic light‐emitting devices (WOLEDs), especially the three‐color‐strategy WOLEDs, have been hindered by the difficulties in fabricating complicated device structures. Here, double‐doped white‐emission organic single crystals are used as the active layers for the first time in the three‐color‐strategy WOLEDs by co‐doping the red and green dopants into blue host crystals. Precise control of the dopant concentration in the double‐doped crystals results in moderately partial energy transfer from the blue donor to the green and red dopants, and thereafter, simultaneous RGB emissions with balanced emission intensity. The highest color‐rendering index (CRI) and efficiency, to the best of the authors' knowledge, are obtained for the crystal‐based WOLEDs. The CRI of the WOLEDs varies between 80 and 89 with the increase of the driving current, and the luminance and current efficiency reach up to 793 cd m?2 and 0.89 cd A?1, respectively. The demonstration of the present three‐color organic single‐crystal‐based WOLED promotes the development of the single crystals in optoelectronics.  相似文献   

5.
This work innovatively develops a dual solution‐shearing method utilizing the semiconductor concentration region close to the solubility limit, which successfully generates large‐area and high‐performance semiconductor monolayer crystals on the millimeter scale. The monolayer crystals with poly(methyl methacrylate) encapsulation show the highest mobility of 10.4 cm2 V?1 s?1 among the mobility values in the reported solution‐processed semiconductor monolayers. With similar mobility to multilayer crystals, light is shed on the charge accumulation mechanism in organic field‐effect transistors (OFETs), where the first layer on interface bears the most carrier transport task, and the other above layers work as carrier suppliers and encapsulations to the first layer. The monolayer crystals show a very low dependency on channel directions with a small anisotropic ratio of 1.3. The positive mobility–temperature correlation reveals a thermally activated carrier transport mode in the monolayer crystals, which is different from the band‐like transport mode in multilayer crystals. Furthermore, because of the direct exposure of highly conductive channels, the monolayer crystal based OFETs can sense ammonia concentrations as low as 10 ppb. The decent sensitivity indicates the monolayer crystals are potential candidates for sensor applications.  相似文献   

6.
The aggregation‐induced emission (AIE) phenomenon is important in organic light‐emitting diodes (OLEDs), for it can potentially solve the aggregation‐caused quenching problem. However, the performance of AIE fluorophor‐based OLEDs (AIE OLEDs) is unsatisfactory, particularly for deep‐blue devices (CIEy < 0.15). Here, by enhancing the device engineering, a deep‐blue AIE OLED exhibits low voltage (i.e., 2.75 V at 1 cd m?2), high luminance (17 721 cd m?2), high efficiency (4.3 lm W?1), and low efficiency roll‐off (3.6 lm W?1 at 1000 cd m?2), which is the best deep‐blue AIE OLED. Then, blue AIE fluorophors, for the first time, have been demonstrated to achieve high‐performance hybrid white OLEDs (WOLEDs). The two‐color WOLEDs exhibit i) stable colors and the highest efficiency among pure‐white hybrid WOLEDs (32.0 lm W?1); ii) stable colors, high efficiency, and very low efficiency roll‐off; or iii) unprecedented efficiencies at high luminances (i.e., 70.2 cd A?1, 43.4 lm W?1 at 10 000 cd m?2). Moreover, a three‐color WOLED exhibits wide correlated color temperatures (10 690–2328 K), which is the first hybrid WOLED showing sunlight‐style emission. These findings will open a novel concept that blue AIE fluorophors are promising candidates to develop high‐performance hybrid WOLEDs, which have a bright prospect for the future displays and lightings.  相似文献   

7.
Since the beginning of organic light‐emitting diodes (OLEDs), blue emission has attracted the most attention and many research groups worldwide have worked on the design of materials for stable and highly efficient blue OLEDs. However, almost all the high‐efficiency blue OLEDs using fluorescent materials are multilayer devices, which are constituted of a stack of organic layers to improve the injection, transport, and recombination of charges within the emissive layer. Although the technology has been mastered, it suffers from real complexity and high cost and is time‐consuming. Simplifying the multilayer structure with a single‐layer one, the simplest devices made only of electrodes and the emissive layer have appeared as an appealing strategy for this technology. However, removing the functional organic layers of an OLED stack leads to a dramatic decrease of the performance and achieving high‐efficiency blue single‐layer OLEDs requires intense research especially in terms of materials design. Herein, an exhaustive review of blue emitting fluorophores that have been incorporated in single‐layer OLEDs is reported, and the links between their electronic properties and the device performance are discussed. Thus, a structure/properties/device performance relationship map is drawn, which is of interest for the future design of organic materials.  相似文献   

8.
Although significant progress has been made in the development of vacuum‐deposited small‐molecule organic light‐emitting diodes (OLEDs), one of the most desired research goals is still to produce flexible displays by low‐cost solution processing. The development of solution‐processed OLEDs based on small molecules could potentially be a good approach but no intensive studies on this topic have been conducted so far. To fabricate high‐performance devices based on solution‐processed small molecules, the underlying nature of the produced films and devices must be elucidated. Here, the distinctive characteristics of solution‐processed small‐molecule films and devices compared to their vacuum‐deposited counterparts are reported. Solution‐processed blue OLEDs show a very high luminous efficiency (of about 8.9 cd A–1) despite their simplified structure. A better hole‐blocking and electron‐transporting layer is essential for achieving high‐efficiency solution‐processed devices because the solution‐processed emitting layer gives the devices a better hole‐transporting capability and more electron traps than the vacuum‐deposited layer. It is found that the lower density of the solution‐processed films (compared to the vacuum‐deposited films) can be a major cause for the short lifetimes observed for the corresponding devices.  相似文献   

9.
2D organic materials with in‐plane van der Waals forces among molecules have unique characteristics that ensure a brilliant future for multifunctional applications. Soluble organic semiconductors can be used to achieve low‐cost and high‐throughput manufacturing of electronic devices. However, achieving solution‐processed 2D single‐crystalline semiconductors with uniform morphology remains a substantial challenge. Here, the fabrication of 2D molecular single‐crystal semiconductors with precise layer definition by using a floating‐coffee‐ring‐driven assembly is presented. In particular, bilayer molecular films exhibit single‐crystalline features with atomic smoothness and high film uniformity over a large area; field‐effect transistors yield average and maximum carrier mobilities of 4.8 and 13.0 cm2 V?1 s?1, respectively. This work demonstrates the strong potential of 2D molecular crystals for low‐cost, large‐area, and high‐performance electronics.  相似文献   

10.
High‐performance, blue, phosphorescent organic light‐emitting diodes (PhOLEDs) are achieved by orthogonal solution‐processing of small‐molecule electron‐transport material doped with an alkali metal salt, including cesium carbonate (Cs2CO3) or lithium carbonate (Li2CO3). Blue PhOLEDs with solution‐processed 4,7‐diphenyl‐1,10‐phenanthroline (BPhen) electron‐transport layer (ETL) doped with Cs2CO3 show a luminous efficiency (LE) of 35.1 cd A?1 with an external quantum efficiency (EQE) of 17.9%, which are two‐fold higher efficiency than a BPhen ETL without a dopant. These solution‐processed blue PhOLEDs are much superior compared to devices with vacuum‐deposited BPhen ETL/alkali metal salt cathode interfacial layer. Blue PhOLEDs with solution‐processed 1,3,5‐tris(m‐pyrid‐3‐yl‐phenyl)benzene (TmPyPB) ETL doped with Cs2CO3 have a luminous efficiency of 37.7 cd A?1 with an EQE of 19.0%, which is the best performance observed to date in all‐solution‐processed blue PhOLEDs. The results show that a small‐molecule ETL doped with alkali metal salt can be realized by solution‐processing to enhance overall device performance. The solution‐processed metal salt‐doped ETLs exhibit a unique rough surface morphology that facilitates enhanced charge‐injection and transport in the devices. These results demonstrate that orthogonal solution‐processing of metal salt‐doped electron‐transport materials is a promising strategy for applications in various solution‐processed multilayered organic electronic devices.  相似文献   

11.
Phosphorescent organic light‐emitting diodes (OLEDs) with ultimate efficiency in terms of the external quantum efficiency (EQE), driving voltage, and efficiency roll‐off are reported, making use of an exciplex‐forming co‐host. This exciplex‐forming co‐host system enables efficient singlet and triplet energy transfers from the host exciplex to the phosphorescent dopant because the singlet and triplet energies of the exciplex are almost identical. In addition, the system has low probability of direct trapping of charges at the dopant molecules and no charge‐injection barrier from the charge‐transport layers to the emitting layer. By combining all these factors, the OLEDs achieve a low turn‐on voltage of 2.4 V, a very high EQE of 29.1% and a very high power efficiency of 124 lm W?1. In addition, the OLEDs achieve an extremely low efficiency roll‐off. The EQE of the optimized OLED is maintained at more than 27.8%, up to 10 000 cd m?2.  相似文献   

12.
A series of compounds containing arylamine and 1,2‐diphenyl‐1H‐benz[d]imidazole moieties are developed as ambipolar, blue‐emitting materials with tunable blue‐emitting wavelengths, tunable ambipolar carrier‐transport properties and tunable triplet energy gaps. These compounds possess several novel properties: (1) they emit in the blue region with high quantum yields; (2) they have high morphological stability and thermal stability; (3) they are capable of ambipolar carrier transport; (4) they possess tunable triplet energy gaps, suitable as hosts for yellow‐orange to green phosphors. The electron and hole mobilities of these compounds lie in the range of 0.68–144 × 10?6 and 0.34–147 × 10?6 cm2 V?1 s?1, respectively. High‐performance, single‐layer, blue‐emitting, fluorescent organic light‐emitting diodes (OLEDs) are achieved with these ambipolar materials. High‐performance, single‐layer, phosphorescent OLEDs with yellow‐orange to green emission are also been demonstrated using these ambipolar materials, which have different triplet energy gaps as the host for yellow‐orange‐emitting to green‐emitting iridium complexes. When these ambipolar, blue‐emitting materials are lightly doped with a yellow‐orange‐emitting iridium complex, white organic light‐emitting diodes (WOLEDs) can be achieved, as well by the use of the incomplete energy transfer between the host and the dopant.  相似文献   

13.
A specially designed n‐type semiconductor consisting of Ca‐doped ZnO (CZO) nanoparticles is used as the electron transport layer (ETL) in high‐performance multicolor perovskite light‐emitting diodes (PeLEDs) fabricated using an all‐solution process. The band structure of the ZnO is tailored via Ca doping to create a cascade of conduction energy levels from the cathode to the perovskite. This energy band alignment significantly enhances conductivity and carrier mobility in the CZO ETL and enables controlled electron injection, giving rise to sub‐bandgap turn‐on voltages of 1.65 V for red emission, 1.8 V for yellow, and 2.2 V for green. The devices exhibit significantly improved luminance yields and external quantum efficiencies of, respectively, 19 cd A?1 and 5.8% for red emission, 16 cd A?1 and 4.2% for yellow, and 21 cd A?1 and 6.2% for green. The power efficiencies of these multicolor devices demonstrated in this study, 30 lm W?1 for green light‐emitting PeLED, 28 lm W?1 for yellow, and 36 lm W?1 for red are the highest to date reported. In addition, the perovskite layers are fabricated using a two‐step hot‐casting technique that affords highly continuous (>95% coverage) and pinhole‐free thin films. By virtue of the efficiency of the ETL and the uniformity of the perovskite film, high brightnesses of 10 100, 4200, and 16,060 cd m?2 are demonstrated for red, yellow, and green PeLEDs, respectively. The strategy of using a tunable ETL in combination with a solution process pushes perovskite‐based materials a step closer to practical application in multicolor light‐emitting devices.  相似文献   

14.
Solution‐processed organic light‐emitting diodes (OLEDs) with thermally activated delayed fluorescent (TADF) material as emitter have attracted much attention because of their low cost and high performance. However, exciton quench at the interface between the hole injection layer, poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), and emitting layer (EML) in devices can lead to low device performance. Here, a novel high triplet energy (2.89 eV) and crosslinkable hole‐transporting material grafted with oxetane groups, N,N‐bis(4‐(6‐((3‐ethyloxetan‐3‐yl)methoxy)hexyloxy)phenyl)‐3,5‐di(9H‐carbazol‐9‐yl)benzenamine (Oxe‐DCDPA)), as crosslinked hole transport layer (HTL) into the interface of PEDOT:PSS layer and EML is proposed for prevention of exciton quenching, and among the reported devices with single HTL in solution‐processed TADF‐OLED, the highest external quantum efficiency (EQE)/luminous efficiency (ηL) of 26.1%/94.8 cd A?1 and 24.0%/74.0 cd A?1 are achieved for green emission (DACT‐II as emitter) and bluish‐green emission (DMAC‐TRZ as emitter), respectively. Further improvement, using double HTLs, composed of N,N′‐bis(4‐(6‐((3‐ethyloxetan‐3‐yl)methoxy))‐hexylphenyl)‐N,N′‐diphenyl‐4,4′‐diamine with high hole mobility and Oxe‐DCDPA with high triplet energy, leads to the highest EQE/ηL of 30.8%/111.9 cd A?1 and 27.2%/83.8 cd A?1 for green emission and bluish‐green emission, respectively. These two devices show the high maximum brightness of 81 100 and 70 000 cd m?2, respectively.  相似文献   

15.
High performance solution‐processed fluorescent and phosphorescent organic light emitting diodes (OLEDs) are achieved by water solution processing of lacunary polyoxometalates used as novel electron injection/transport materials with excellent electron mobilities and hole blocking capabilities. Green fluorescent OLEDs using poly[(9,9‐dioctylfluorenyl‐2,7‐diyl)‐co‐(1,4‐benzo‐{2,1′,3}‐thiadiazole)] (F8BT) as the emissive layer and our polyoxometalates as electron transport/hole blocking layers give a luminous efficiency up to 6.7 lm W?1 and a current efficiency up to 14.0 cd A?1 which remained nearly stable for about 500 h of operation. In addition, blue phosphorescent OLEDs (PHOLEDs) using poly(9‐vinylcarbazole) (PVK):1,3‐bis[2‐(4‐tert‐butylphenyl)‐1,3,4‐oxadiazo‐5‐yl]benzene (OXD‐7) as a host and 10.0 wt% FIrpic as the blue dopant in the emissive layer and a polyoxometalate as electron transport material give 12.5 lm W?1 and 30.0 cd A?1 power and luminous efficiency, respectively, which are among the best performance values observed to date for all‐solution processed blue PHOLEDs. The lacunary polyoxometalates exhibit unique properties such as low electron affinity and high ionization energy (of about 3.0 and 7.5 eV, respectively) which render them as efficient electron injection/hole blocking layers and, most importantly, exceptionally high electron mobility of up to 10?2 cm2 V?1 s?1.  相似文献   

16.
Grafting six fluorene units to a benzene ring generates a new highly twisted core of hexakis(fluoren‐2‐yl)benzene. Based on the new core, six‐arm star‐shaped oligofluorenes from the first generation T1 to third generation T3 are constructed. Their thermal, photophysical, and electrochemical properties are studied, and the relationship between the structures and properties is discussed. Simple double‐layer electroluminescence (EL) devices using T1–T3 as non‐doped solution‐processed emitters display deep‐blue emissions with Commission Internationale de l'Eclairage (CIE) coordinates of (0.17, 0.08) for T1 , (0.16, 0.08) for T2 , and (0.16, 0.07) for T3 . These devices exhibit excellent performance, with maximum current efficiency of up to 5.4 cd A?1, and maximum external quantum efficiency of up to 6.8%, which is the highest efficiency for non‐doped solution‐processed deep‐blue organic light‐emitting diodes (OLEDs) based on starburst oligofluorenes, and is even comparable with other solution‐processed deep‐blue fluorescent OLEDs. Furthermore, T2‐ and T3‐ based devices show striking blue EL color stability independent of driving voltage. In addition, using T0–T3 as hole‐transporting materials, the devices of indium tin oxide (ITO)/poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonic acid) (PEDOT:PSS)/ T0–T3 /tris(8‐hydroxyquinolinato)aluminium (Alq3)/LiF/Al achieve maximum current efficiencies of 5.51–6.62 cd A?1, which are among the highest for hole‐transporting materials in identical device structure.  相似文献   

17.
Polymer dielectrics with intrinsic mechanical flexibility are considered as a key component for flexible organic field‐effect transistors (OFETs). However, it remains a challenge to fabricate highly aligned organic semiconductor single crystal (OSSC) arrays on the polymer dielectrics. Herein, for the first time, a facile and universal strategy, polar surface‐confined crystallization (PSCC), is proposed to grow highly aligned OSSC arrays on poly(4‐vinylphenol) (PVP) dielectric layer. The surface polarity of PVP is altered periodically with oxygen‐plasma treatment, enabling the preferential nucleation of organic crystals on the strong‐polarity regions. Moreover, a geometrical confinement effect of the patterned regions can also prevent multiple nucleation and misaligned molecular packing, enabling the highly aligned growth of OSSC arrays with uniform morphology and unitary crystallographic orientation. Using 2,7‐dioctyl[1]benzothieno[3,2‐b]benzothiophene (C8‐BTBT) as an example, highly aligned C8‐BTBT single crystal arrays with uniform molecular packing and crystal orientation are successfully fabricated on the PVP layer, which can guarantee their uniform electrical properties. OFETs made from the C8‐BTBT single crystal arrays on flexible substrates exhibit a mobility as high as 2.25 cm2 V?1 s?1, which has surpassed the C8‐BTBT polycrystalline film‐based flexible devices. This work paves the way toward the fabrication of highly aligned OSSCs on polymer dielectrics for high‐performance, flexible organic devices.  相似文献   

18.
A new series of blue‐light‐emitting fluorene derivatives have been synthesized and characterized. The fluorene derivatives have high fluorescence yields, good thermal stability, and high glass‐transition temperatures in the range 145–193 °C. Organic light‐emitting diodes (OLEDs) fabricated using the fluorene derivatives as the host emitter show high efficiency (up to 5.3 cd A–1 and 3.0 lm W–1) and bright blue‐light emission (Commission Internationale de L'Eclairage (CIE) coordinates of x = 0.16, y = 0.22). The performance of the non‐doped fluorene‐based devices is among the best fluorescent blue‐light‐emitting OLEDs. The good performance of the present blue OLEDs is considered to derive from: 1) appropriate energy levels of the fluorene derivatives for good carrier injection; 2) good carrier‐transporting properties; and 3) high fluorescence efficiency of the fluorene derivatives. These merits are discussed in terms of the molecular structures.  相似文献   

19.
A new organic blue‐light emitter 1‐methyl‐2‐(anthryl)‐imidazo[4,5‐f][1,10]‐phenanthroline ( 1 ) has been synthesized and fully characterized. The utility of compound 1 as a blue‐light emitter in electroluminescent (EL) devices has been evaluated by fabricating a series of EL devices A where compound 1 functions as an emitter. The EL spectrum of device series A has the emission maximum at 481 nm with the CIE (Commission Internationale de l'Eclairage) color coordinates 0.198 and 0.284. The maximum luminance of devices in series A is 4000 cd m–2 and the best external quantum efficiency of device series A is 1.82 %. The utility of compound 1 as an electron injection–electron transport material has been evaluated by constructing a set of EL devices B where 1 is used as either the electron‐injection layer or the electron injection–electron transport layer. The performance of device series B is compared to the standard device in which Alq3 (tris(8‐hydroxyquinoline) aluminum) is used as the electron injection–electron transport layer. The experimental results show that the performance of 1 as an electron injection–electron transport material is considerably better than Alq3. The stability of device series B is comparable to that of the standard Alq3 device. The excellent performance of 1 as an electron injection/transport material may be attributed to the strong intermolecular interactions of 1 in the solid state as revealed by single‐crystal X‐ray diffraction analysis. In addition, compound 1 is a colorless material with a much larger highest occupied molecular orbital–lowest unoccupied molecular (HOMO–LUMO) gap than Alq3, which renders it potentially useful for a wide range of applications in EL devices.  相似文献   

20.
This paper presents a new strategy to develop efficient organic light‐emitting devices (OLEDs) by doping fluorescent‐ and phosphorescent‐type emitters individually into two different hosts separated by an interlayer to form a fluorescence–interlayer–phosphorescence (FIP) emission architecture. One blue OLED with FIP emission structure comprising p‐bis(pN,N‐diphenylaminostyryl)benzene (DSA‐Ph) and bis[(4,6‐di‐fluorophenyl)‐pyridinate‐N,C2']picolinate (FIrpic) exhibiting a peak luminance efficiency of 15.8 cd A?1 at 1.54 mA cm?2 and a power efficiency of 10.2 lm W?1 at 0.1 mA cm?2 is successfully demonstrated. The results are higher than those of typical phosphorescent OLEDs with a single emission layer by 34% and 28%, respectively. From experimental and theoretical investigations on device performance, and the functions of the used emitters and interlayer, such enhancement should ascribe to the appropriate utilization of the two types of emitters. The fluorescent emitter of DSA‐Ph is used to facilitate the carrier transport, and thus accelerate the generation of excitons, while the phosphorescent emitter of FIrpic could convert the generated excitons into light efficiently. The method proposed here can be applied for developing other types of red, green, and white OLEDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号