共查询到20条相似文献,搜索用时 15 毫秒
1.
FeNiCuMnTiSnx multicomponent alloys (x = 0, 0.05, 0.1, 0.5, and 1 where x denotes the adding amount in atomic percentage when other elements are taken as 1) are prepared by an arc furnace. The results show that the crystal structure of FeNiCuMnTiSnx alloys transforms from mixed intermetallic compounds to a single crystal structure (zinc blende structure) with the increasing of Sn content. The magnetization of the FeNiCuMnTiSnx alloys gradually increases from 0.34 to 15.8 emu · g?1 with the increasing x, the magnetic transformation undergoes from the paramagnetism (x = 0, 0.05, 0.1) to superparamagnetism (x = 0.5) finally to soft magnetism (x = 1) at room temperature. We use computer simulation and find that the magnetism of alloys appears when Fe atoms replace Ni atoms. 相似文献
2.
3.
Multi‐principal elemental alloys, commonly referred to as high‐entropy alloys (HEAs), are a new class of emerging advanced materials with novel alloy design concept. Unlike the design of conventional alloys, which is based on one or at most two principal elements, the design of HEA is based on multi‐principal elements in equal or near‐equal atomic ratio. The advent of HEA has revived the alloy design perception and paved the way to produce an ample number of compositions with different combinations of promising properties for a variety of structural applications. Among the properties possessed by HEAs, sluggish diffusion and strength retention at elevated temperature have caught wide attention. The need to develop new materials for high‐temperature applications with superior high‐temperature properties over superalloys has been one of the prime concerns of the high‐temperature materials research community. The current article shows that HEAs have the potential to replace Ni‐base superalloys as the next generation high‐temperature materials. This review focuses on the phase stability, microstructural stability, and high‐temperature mechanical properties of HEAs. This article will be highly beneficial for materials engineering and science community whose interest is in the development and understanding of HEAs for high‐temperature applications. 相似文献
4.
5.
6.
7.
《材料科学技术学报》2017,(7)
A series of CoCrFeNb_xNi(x values in molar ratio, x = 0, 0.25, 0.45, 0.5, 0.75, 1.0 and 1.2) high entropy alloys(HEAs) was prepared to investigate the alloying effect of Nb on the microstructures and mechanical properties. The results indicate that the prepared CoCrFeNb_xNi(x 0) HEAs consist of a simple FCC solid solution phase and a Laves phase. The microstructures of the alloys change from an initial single-phase FCC solid solution structure(x = 0) to a hypoeutectic microstructure(x = 0.25), then to a full eutectic microstructure(x = 0.45) and finally to a hypereutectic microstructure(0.5 x 1.2). The compressive test results show that the Nb0.45(x = 0.45) alloy with a full eutectic microstructure possesses the highest compressive fracture strength of 2558 MPa and a fracture strain of 27.9%. The CoCrFeNi alloy exhibits an excellent compressive ductility, which can reach 50% height reduction without fracture. The Nb0.25 alloy with a hypoeutectic structure exhibits a larger plastic strain of 34.8%. With the increase of Nb content, increased hard/brittle Laves phase leads to a decrease of the plasticity and increases of the Vickers hardness and the wear resistance. The wear mass loss, width and depth of wear scar of the Nb1.2(x = 1.2) alloy with a hypereutectic structure are the lowest among all alloy systems, indicating that the wear resistance of the Nb1.2 alloy is the best one. 相似文献
8.
9.
10.
Microstructure and Mechanical Properties of Al25 − xCr25 + 0.5xFe25Ni25 + 0.5x (x = 19, 17, 15 at%) Multi‐Component Alloys 下载免费PDF全文
11.
12.
自高熵合金被首次报道以来,其优异的力学性能引起了国内外学者的广泛关注.高熵合金的高强度、高硬度、高耐磨性、耐腐蚀性以及其在极端温度下的服役能力,都表明高熵合金在未来工业应用中具有巨大潜力.随着对高熵合金的深入研究,从元素比例的改变到元素种类的改变再到新组元的添加,每一次高熵合金力学性能的优化与发展均伴随着结构的改变.尽管如此,高熵合金的力学性能依旧有很大的提升空间.因此,如何合理设计高熵合金的微观结构、提升其力学性能是当前研究的热点问题.在高熵合金中,已存在的强韧化方法有细晶强化、固溶强韧化、共晶组织强韧化、孪生诱导塑性(Twinning induced plasticity,TWIP)效应强韧化、相变诱导塑性(Transformation induced plasticity,TRIP)效应强韧化和第二相强韧化等.其中,细晶强化与第二相强化在绝大多数高熵合金中都存在且很容易通过热机械处理来实现.因此,如何在强化机理、组织特征、力学性能三者之间建立联系,是当前亟待解决的问题.本文归纳了高熵合金强韧化方法的研究进展,从高熵合金的优秀力学性能入手,分别介绍了固溶强化、短程有序(Short-range ordering,SRO)强化、γ'相强化、晶粒异构强韧化等结构设计理念,并且讨论了各种结构对高熵合金变形机制和力学性能的影响,分析了当前高熵合金的发展前景,以期为后续关于组织特征与力学性能建立有效联系提供参考. 相似文献
13.
Additive Manufacturing of Advanced Multi‐Component Alloys: Bulk Metallic Glasses and High Entropy Alloys 下载免费PDF全文
Xiaopeng Li 《Advanced Engineering Materials》2018,20(5)
14.
Micro‐Macroporous Composite Materials – Preparation Techniques and Selected Applications: A Review 下载免费PDF全文
15.
Min XU Minxiu QUAN Zhuangqi HU Yandong WANG Liang ZUO 《材料科学技术学报》2007,23(5):703-706
Fe62Cos-xCrxZr6Nb4B20 (x=0-4 at. pct) metallic glasses show high thermal stability with a maximum supercooled liquid region of about 84.8 K. The addition of 2 at. pct Cr causes the extension of the supercooled liquid region remarkably, leading to the enhancement of thermal stability and glass-forming ability. The crystallization of the Fe-based glassy alloys takes place through a single exothermic reaction, accompanying the precipitation of more than three kinds of crystallized phases such as α-Fe, Fe2Zr and ZrB2. The long-range atomic rearrangements required for the precipitation of the multiple crystalline phases seem to play an important role in the appearance of the large supercooled liquid region through the retardation of the crystallization reactions. The Fe-based alloys exhibit soft ferromagnetic properties. The saturation magnetization decreases with increasing Cr content while the saturated magnetostriction increases as a function of Cr content. There is no distinct change in the saturation magnetization and coercive force with annealing temperature below the crystallization temperature. The devitrification gives rise to a considerable enhancement in both as and He. 相似文献
16.
17.
18.
19.
20.