首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Harvesting ambient mechanical energy is a key technology for realizing self‐powered electronics, which has tremendous applications in wireless sensing networks, implantable devices, portable electronics, etc. The currently reported triboelectric nanogenerator (TENG) mainly uses solid materials, so that the contact between the two layers cannot be 100% with considering the roughness of the surfaces, which greatly reduces the total charge density that can be transferred and thus the total energy conversion efficiency. In this work, a liquid‐metal‐based triboelectric nanogenerator (LM‐TENG) is developed for high power generation through conversion of mechanical energy, which allows a total contact between the metal and the dielectric. Due to that the liquid–solid contact induces large contacting surface and its shape adaptive with the polymer thin films, the LM‐TENG exhibits a high output charge density of 430 μC m?2, which is four to five times of that using a solid thin film electrode. And its power density reaches 6.7 W m?2 and 133 kW m?3. More importantly, the instantaneous energy conversion efficiency is demonstrated to be as high as 70.6%. This provides a new approach for improving the performance of the TENG for special applications. Furthermore, the liquid easily fluctuates, which makes the LM‐TENG inherently suitable for vibration energy harvesting.  相似文献   

3.
Atmospheric moisture accelerates the triboelectric charge transport and dissipation in the triboelectric nanogenerator (TENG). However, the output of polyvinyl alcohol (PVA)-based humidity-resistant TENG is still limited under high humidity and suffers from the swelling problem in practical application. In this paper, a swelling- and humidity-resistant high-performance TENG using a polyacrylonitrile/polyvinyl alcohol-calcium chloride (PAN/PVA-CaCl2) composite film (PPCa-TENG) is designed for seawater desalination. The PAN/PVA-CaCl2 composite films exhibit superior water uptake speed, swelling resistance, and mechanical and tribological properties compared with other prepared membranes at high relative humidity (RH). The maximum short-circuit current (Isc) and output voltage (Vo) of the PPCa-TENG can reach 52.04 µA and 941 V at 75% RH, respectively, with increasing the power of PVA-based TENG by about 17.39 times. The Kelvin probe force microscopy (KPFM) results suggest that the PAN/PVA-CaCl2 composite film demonstrates a higher tribopositivity. Furthermore, the PPCa-TENG is applied as an effective, economical power source for seawater desalination, with an energy consumption of only 0.19 kWh m−3. This number is remarkably lower than that of desalination powered by conventional direct-current power supplies reported in previous work. This paper provides a feasible, effective method for the design of the TENG with high performance under high-humidity conditions.  相似文献   

4.
With its light weight, low cost, and high efficiency, the triboelectric nanogenerator (TENG) is considered a sustainable and renewable energy source for self‐powered or mobile electronics. However, the performance of TENG is seriously affected by humid environment. Here, for the first time, TENG with improved performance under high humidity is obtained by adding HKUST‐1 (Cu3(BTC)2, (BTC = 1,3,5‐benzenetricarboxylate or trimesate)) to polydimethylsiloxane (PDMS) matrix. At 10% relative humidity (RH), an effective power (3.17 mW) of the composite TENG based on 5 wt% HKUST‐1 is obtained at a load resistance of 10 MΩ, which is 13 times higher than that of the TENG based on pure PDMS. More importantly, the performance of composite TENG remains constant or becomes higher even under high humidity, while that of conventional TENG dramatically decreases at the same condition. The excellent humidity‐resistive performance comes from the remarkably enhanced electron‐trapping capacity and dielectric constant due to the absorption of HKUST‐1 to water molecules. This work not only demonstrates that a metal organic framework is an effective filler to improve the performance of TENG but also provides a novel strategy to obtain high output properties under highly humid environments by increasing the electron‐trapping capacity and dielectric constant.  相似文献   

5.
Inspired by treefrog's toe pads that show superior frictional properties, herein, an industrially compatible approach is reported to make an efficient dielectric tribosurface design using customizable nonclose‐packed microbead arrays, mimicking the friction pads of treefrogs, in order to significantly enhance electrification performance and reliability of triboelectric nanogenerator (TENG). The approach involves using an engineering polymer to prepare a highly ordered large‐area concave film, and subsequently the molding of a convex patterned triboreplica in which the concave film is exploited as a reusable master mold. A nature‐inspired TENG based on the patterned polydimethylsiloxane (PDMS) paired with flat aluminum (Al) can generate a relatively high power density of 8.1 W m?2 even if a very small force of ≈6.5 N is applied. Moreover, the convex patterned PDMS‐based TENG possesses exceptional durability and reliability over 25 000 cycles of contact–separation. Considering the significant improvements in power generation of TENG; particularly at very small force, together with cost‐effectiveness and possibility of mass production, the present methodology may pave the way for large‐scale blue energy harvesting and commercialization of TENGs for many practical applications.  相似文献   

6.
Sleeping disorder is a major health threatening in high‐pace modern society. Characterizing sleep behavior with pressure‐sensitive, simple fabrication, and decent washability still remains a challenge and highly desired. Here, a pressure‐sensitive, large‐scale, and washable smart textile is reported based on triboelectric nanogenerator (TENG) array as bedsheet for real‐time and self‐powered sleep behavior monitoring. Fabricated by conductive fibers and elastomeric materials with a wave structure, the TENG units exhibit desirable features including high sensitivity, fast response time, durability, and water resistance, and are interconnected together, forming a pressure sensor array. Furthermore, highly integrated data acquisition, processing, and wireless transmission system is established and equipped with the sensor array to realize real‐time sleep behavior monitoring and sleep quality evaluation. Moreover, the smart textile can further serve as a self‐powered warning system in the case of an aged nonhospitalized patients falling down from the bed, which will immediately inform the medical staff. This work not only paves a new way for real‐time noninvasive sleep monitoring, but also presents a new perspective for the practical applications of remote clinical medical service.  相似文献   

7.
As a new energy harvesting strategy, triboelectric nanogenerators which have a broad application prospect in collecting environmental energy, human body mechanical energy, and supplying power for low‐power electronic devices, have attracted extensive attention. However, technology challenges still exist in the stretchability for the preparation of some high‐performance triboelectric materials. In this work, a new strategy for nonmetallic nylon‐modified triboelectric nanogenerators (NM‐TENGs) is reported. Nylon is introduced as a high performance friction material to enhance the output performance of the stretchable TENG. The uniform matrix reduces the difficulty of heterogeneous integration and enhances the structural strength. The open‐circuit voltage (VOC) and short‐circuit current (ISC) of NM‐TENG can reach up to 1.17 kV and 138 µA, respectively. The instantaneous power density reaches 11.2 W m?2 and the rectified output can directly light ≈480 LEDs. The transferred charge density is ≈100 µC m?2 in one cycle when charging the capacitor. In addition, a low‐power electronic clock can be driven directly by the rectified signal without additional circuits. NM‐TENG also has high enough strain rate and can be attached to the human body for energy harvesting effectively. This work provides a new idea for fabrication of stretchable TENGs and demonstrates their potential application.  相似文献   

8.
Energy shortage and environmental degradation are two important challenges facing humanity. Here, a multi-layer stacked triboelectric nanogenerator (MLS-TENG) based on a rotation-to-translation mechanism is reported for fluid energy harvesting and environmental protection. The mechanism transforms fluid-induced rotation into a reciprocal translation of the MLS-TENG, enabling the conversion of fluid energy into electrical energy. In addition, benefiting from a multi-layer stacked structural design, the open-circuit voltage is increased from 860 to 2410 V and an efficient energy harvesting rate of 2 mJ min−1 is obtained in an actual river. Furthermore, with the assistance of the MLS-TENG, a self-powered wireless temperature and humidity monitoring system and a metal anticorrosion system are successfully established. Ambient monitoring data can be transmitted continuously at an interval of 49.7 s, and the corrosion rate of steel is significantly slowed down. This study provides guidance for efficient harvesting of ambient fluid energy, with promising applications in environmental monitoring and protection.  相似文献   

9.
A spherical three‐dimensional triboelectric nanogenerator (3D‐TENG) with a single electrode is designed, consisting of an outer transparent shell and an inner polyfluoroalkoxy (PFA) ball. Based on the coupling of triboelectric effect and electrostatic effect, the rationally developed 3D‐TENG can effectively scavenge ambient vibration energy in full space by working at a hybridization of both the contact‐separation mode and the sliding mode, resulting in the electron transfer between the Al electrode and the ground. By systematically investigating the output performance of the device vibrating under different frequencies and along different directions, the TENG can deliver a maximal output voltage of 57 V, a maximal output current of 2.3 μA, and a corresponding output power of 128 μW on a load of 100 MΩ, which can be used to directly drive tens of green light‐emitting diodes. Moreover, the TENG is utilized to design the self‐powered acceleration sensor with detection sensitivity of 15.56 V g‐1. This work opens up many potential applications of single‐electrode based TENGs for ambient vibration energy harvesting techniques in full space and the self‐powered vibration sensor systems.  相似文献   

10.
A novel class of high performance polymer porous aerogel film‐based triboelectric nanogenerators (A‐NGs) is demonstrated. The A‐NGs, made of a pair of highly porous polymer films, exhibit much higher triboelectric outputs than the corresponding dense polymer film‐based triboelectric nanogenerators (D‐NGs) under the same mechanical stress. The triboelectric outputs of the A‐NGs increase significantly with increasing porosity, which can be attributed to the increase in contact area and the electrostatic induction in the porous structure, thereby leading to additional charges on the porous surface. Remarkably, the A‐NG fabricated using porous chitosan aerogel film paired with the most porous polyimide (with a porosity of 92%) aerogel film demonstrates a very high voltage of 60.6 V and current of 7.7 µA, corresponding to a power density of 2.33 W m?2, which is sufficient to power 22 blue light‐emitting‐diodes (LEDs). This is the first report on triboelectric nanogenerators (TENGs) employing porous polymer aerogel films as both positive and negative materials to enhance triboelectric outputs. Furthermore, enhancing the tribopositive polarity of the cellulose aerogel film via silanization using aminosilane can dramatically improve the triboelectric performance. Therefore, this study provides new insights into investigating porous materials with tunable triboelectric polarities for high performance TENGs.  相似文献   

11.
Triboelectric nanogenerators (TENGs) are gaining much research interest recently owing to their facile and cost‐effective device structure. However, the effect of relative humidity (in moisture atmosphere) on the output performance still needs to be resolved. Herein, a pouch‐type TENG is proposed to significantly reduce the effect of relative humidity on its electrical output and a stable performance is also attained in a humid environment. In this regard, a dielectric and dielectric materials‐based TENG (DD‐TENG) is first developed using nanoarchitecture polydimethylsiloxane (NA‐PDMS) and multiwalled carbon nanotube/nylon composite layers as a triboelectric material with the negative and positive tendencies, respectively. The NA‐PDMS and nylon composite layers play a key role in increasing the surface contact area and surface charge density between the dielectric/triboelectric materials as well as the output performance of DD‐TENG. However, the DD‐TENG device exhibits a stable and high output performance with the effective output power density of ≈25.35 W m?2. Additionally, the performance of the pouch‐type DD‐TENG device is not almost affected even though the relative humidity is increased from 35 to 81%, while it is dramatically decreased for the nonpouch‐type device. Finally, the pouch‐type DD‐TENG is employed as a wearable device to effectively harvest the mechanical energy from daily human activities.  相似文献   

12.
Dielectric elastomers are a type of actuator materials that exhibit excellent performance as artificial muscles, but a high driving voltage is required for their operation. By using the amazingly high output voltage generated from a triboelectric nanogenerator (TENG), a thin film dielectric elastomer actuator (DEA) can be directly driven by the contact‐separation motion of TENG, demonstrating a self‐powered actuation system. A TENG with a tribo surface area of 100 cm2 can induce an expansion strain of 14.5% for the DEA samples (electrode diameter of 0.6 cm) when the system works stably within the contact‐separation velocity ranging from 0.1 to 10 cm s?1. Finally, two simple prototypes of an intelligent switch and a self‐powered clamper based on the TENG and DEA are demonstrated. These results prove that the dielectric elastomer is an ideal material to work together with TENG and thereby the fabricated actuation system can potentially be applied to the field of electronic skin and soft robotics.  相似文献   

13.
The first contact‐mode triboelectric self‐powered strain sensor using an auxetic polyurethane foam, conductive fabric, and polytetrafluroethylene (PTFE) is fabricated. Utilizing the auxetic properties of the polyurethane foam, the auxetic polyurethane foam would expand into the PTFE when the foam is stretched, causing contact electrification. Due to a larger contact area between the PTFE and the foam as the foam is stretched, this device can serve effectively as a strain sensor. The sensitivity of this method is explored, and this sensor has the highest sensitivity in all triboelectric nanogenerator devices that are used previously as a strain sensor. Different applications of this strain sensor are shown, and this sensor can be used as a human body monitoring system, self‐powered scale to measure weight, and a seat belt to measure body movements inside a car seat.  相似文献   

14.
By integrating a triboelectric nanogenerator (TENG) and an electrostatic actuation system (EAS), two kinds of self‐powered EAS are designed for manipulating the movement of both microfluid and tiny solid objects. The mechanical triggering of the TENG can generate an extremely high electrostatic field inside EAS and thus the tiny object (liquid or solid) in the EAS can be actuated by the Coulomb force. Accordingly, the tribomotion of TENG can be used as both the driving power and control signal for the EAS. The TENG device with a contact surface of 70 cm2 can drive a water droplet to move across a gap of 2 cm. Meanwhile, the confluence of two droplets with the same charge polarity and different components can also be induced and controlled by this self‐powered EAS. In addition, based on the same working principle, this EAS also demonstrates its capability for manipulating solid object (e.g., a tiny steel pellet). By sliding the Kapton film along a segmented annular electrode, the tiny pellet can well follow the rotated motion of the Kapton film. The demonstrated concept of this self‐powered EAS has excellent applicability for various micro/miniature actuation devices, electromechanical systems, human–machine interaction, etc.  相似文献   

15.
The functionalized conductive polymer is a promising choice for flexible triboelectric nanogenerators (TENGs) for harvesting human motion energy still poses challenges. In this work, a transparent and stretchable wrinkled poly(3,4‐ethylenedioxythiophene):poly(4‐styrenesulfonate) (PEDOT:PSS) electrode based TENG (WP‐TENG) is fabricated. The optimum conductivity and transparency of PEDOT:PSS electrode can reach 0.14 kΩ □−1 and 90%, respectively, with maximum strain of ≈100%. Operating in single‐electrode mode at 2.5 Hz, the WP‐TENG with an area of 6 × 3 cm2 produces an open‐circuit voltage of 180 V, short‐circuit current of 22.6 µA, and average power density of 4.06 mW m−2. It can be worn on the wrist to harvest hand tapping energy and charge the capacitor to 2 V in ≈3.5 min, and then drive an electronic watch. Furthermore, the WP‐TENG as the human motion monitoring sensor could inspect the bending angle of the elbow and joint by analyzing the peak value of voltage and monitor the motion frequency by counting the peak number. The triboelectric mechanism also enables the WP‐TENG to realize high‐performance active tactile sensing. The assembled 3 pixel × 3 pixel tactile sensor array is fabricated for mapping the touch location or recording the shape of object contacted with the sensor array.  相似文献   

16.
Self‐healing triboelectric nanogenerators (TENGs) with flexibility, robustness, and conformability are highly desirable for promising flexible and wearable devices, which can serve as a durable, stable, and renewable power supply, as well as a self‐powered sensor. Herein, an entirely self‐healing, flexible, and tailorable TENG is designed as a wearable sensor to monitor human motion, with infrared radiation from skin to promote self‐healing after being broken based on thermal effect of infrared radiation. Human skin is a natural infrared radiation emitter, providing favorable conditions for the device to function efficiently. The reversible imine bonds and quadruple hydrogen bonding (UPy) moieties are introduced into polymer networks to construct self‐healable electrification layer. UPy‐functionalized multiwalled carbon nanotubes are further incorporated into healable polymer to obtain conductive nanocomposite. Driven by the dynamic bonds, the designed and synthesized materials show excellent intrinsic self‐healing and shape‐tailorable features. Moreover, there is a robust interface bonding in the TENG devices due to the similar healable networks between electrification layer and electrode. The output electric performances of the self‐healable TENG devices can almost restore their original state when the damage of the devices occurs. This work presents a novel strategy for flexible devices, contributing to future sustainable energy and wearable electronics.  相似文献   

17.
The development of stretchable/soft electronics requires power sources that can match their stretchability. In this study, a highly stretchable, transparent, and environmentally stable triboelectric nanogenerator with ionic conductor electrodes (iTENG) is reported. The ion‐conducting elastomer (ICE) electrode, together with a dielectric elastomer electrification layer, allows the ICE‐iTENG to achieve a stretchability of 1036% and transmittance of 91.5%. Most importantly, the ICE is liquid solvent‐free and thermally stable up to 335 °C, avoiding the dehydration‐induced performance degradation of commonly used hydrogels. The ICE‐iTENG shows no decrease in electrical output even after storing at 100 °C for 15 h. Biomechanical motion energies are demonstrated to be harvested by the ICE‐iTENG for powering wearable electronics intermittently without extra power sources. An ICE‐iTENG‐based pressure sensor is also developed with sensitivity up to 2.87 kPa?1. The stretchable ICE‐iTENG overcomes the strain‐induced performance degradation using percolated electrical conductors and liquid evaporation‐induced degradation using ion‐conducting hydrogels/ionogels, suggesting great promising applications in soft/stretchable electronics under a relatively wider temperature range.  相似文献   

18.
19.
Power and electronic components that are self‐healable, deformable, transparent, and self‐powered are highly desirable for next‐generation energy/electronic/robotic applications. Here, an energy‐harvesting triboelectric nanogenerator (TENG) that combines the above features is demonstrated, which can serve not only as a power source but also as self‐powered electronic skin. This is the first time that both of the triboelectric‐charged layer and electrode of the TENG are intrinsically and autonomously self‐healable at ambient conditions. Additionally, comparing with previous partially healable TENGs, its fast healing time (30 min, 100% efficiency at 900% strain), high transparency (88.6%), and inherent superstretchability (>900%) are much more favorable. It consists of a metal‐coordinated polymer as the triboelectrically charged layer and hydrogen‐bonded ionic gel as the electrode. Even after 500 cutting‐and‐healing cycles or under extreme 900%‐strain, the TENG retains its functionality. The generated electricity can be used directly or stored to power commercial electronics. The TENG is further used as self‐powered tactile‐sensing skin in diverse human–machine interfaces including smart glass, an epidermal controller, and phone panel. This TENG with merits including fast ambient‐condition self‐healing, high transparency, intrinsic stretchability, and energy‐extraction and actively‐sensing abilities, can meet wide application needs ranging from deformable/portable/transparent electronics, smart interfaces, to artificial skins.  相似文献   

20.
Magnesium as a promising alloy‐type anode material for lithium‐ion batteries features both high theoretical specific capacity (2150 mAh g?1) and stack energy density (1032 Wh L?1). However, the poor cycling performance of Mg‐based anodes severely limits their application, mainly because high‐impedance films can grow easily on the surface of Mg and cause diminished electrochemical activity. As a result, the capacities of reported Mg anodes fade quickly in less than 100 cycles. To improve the stability of Mg anodes, 3D Cu@Mg@C structures are prepared by depositing Mg/C composite on 3D Cu current collectors. The resulting 3D Cu@Mg@C anodes can deliver an initial capacity of 1392 mAh g?1. With a second‐cycle capacity of 1255 mAh g?1, 91% can be retained after 1000 cycles at 0.5 C. When cycled at 2 C, the initial capacity can be maintained for 4000 cycles. This remarkably improved cycling performance can be attributed to both the 3D structure and the embedded carbon layers of the 3D Cu@Mg@C electrodes that facilitate electrical contact and prevent the growth of high‐impedance films during cycling. With 3D Cu@Mg@C anodes and LiFePO4 cathodes, full cells are assembled and charging by a rotating triboelectric nanogenerator that can harvest mechanical energy is demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号