首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We report the synthesis of a novel branched nano‐heterostructure composed of SnO2 nanowire stem and α‐Fe2O3 nanorod branches by combining a vapour transport deposition and a facile hydrothermal method. The epitaxial relationship between the branch and stem is investigated by high resolution transmission electron microscopy (HRTEM). The SnO2 nanowire is determined to grow along the [101] direction, enclosed by four side surfaces. The results indicate that distinct crystallographic planes of SnO2 stem can induce different preferential growth directions of secondary nanorod branches, leading to six‐fold symmetry rather than four‐fold symmetry. Moreover, as a proof‐of‐concept demonstration of the function, such α‐Fe2O3/SnO2 composite material is used as a lithium‐ion batteries (LIBs) anode material. Low initial irreversible loss and high reversible capacity are demonstrated, in comparison to both single components. The synergetic effect exerted by SnO2 and α‐Fe2O3 as well as the unique branched structure are probably responsible for the enhanced performance.  相似文献   

3.
Novel composites composed of α‐Fe2O3 tetrakaidecahedrons and graphene oxide have been easily fabricated and demonstrated to be efficient photoelectrodes for photoelectrochemical water splitting reaction with superior photocurrent response. α‐Fe2O3 tetrakaidecahedrons are facilely synthesized in a green manner without any organic additives and then modified with graphene oxide. The morphological and structural properties of α‐Fe2O3/graphene composite are intensively investigated by several means, such as X‐ray diffraction, field‐emission scanning electron microscope, transmission electron microscope, X‐ray photoelectron spectroscopy, Fourier Transform infrared spectroscopy, and Raman spectroscopy. The tetrakaidecahedronal hematite particles have been indicated to be successfully coupled with graphene oxide. Systematical photoelectrochemical and impedance spectroscopy measurements have been carried out to investigate the favorable performance of α‐Fe2O3/graphene composites, which are found to be effective photoanodes with rapid, steady, and reproducible feature. The coupling of graphene with α‐Fe2O3 particles has greatly enhanced the photoelectrochemical performance, resulting in higher photocurrent and lower onset potential than that of pure α‐Fe2O3. This investigation has provided a feasible method to synthesize α‐Fe2O3 tetrakaidecahedron and fabricate an efficient α‐Fe2O3/graphene photoelectrode for photoelectrochemical water oxidation, suggesting a promising route to design noble metal free semiconductor/graphene photocatalysts.  相似文献   

4.
Hematite (α‐Fe2O3) as a photoanode material for photoelectrochemical (PEC) water splitting suffers from the two problems of poor charge separation and slow water oxidation kinetics. The construction of p–n junction nanostructures by coupling of highly stable Co3O4 in aqueous alkaline environment to Fe2O3 nanorod arrays with delicate energy band positions may be a challenging strategy for efficient PEC water oxidation. It is demonstrated that the designed p‐Co3O4/n‐Fe2O3 junction exhibits superior photocurrent density, fast water oxidation kinetics, and remarkable charge injection and bulk separation efficiency (ηinj and ηsep), attributing to the high catalytic behavior of Co3O4 for the oxygen evolution reaction as well as the induced interfacial electric field that facilitates separation and transportation of charge carriers. In addition, a cocatalyst of cobalt phosphate (Co‐Pi) is introduced, which brings the PEC performance to a high level. The resultant Co‐Pi/Co3O4/Ti:Fe2O3 photoanode shows a photocurrent density of 2.7 mA cm?2 at 1.23 VRHE (V vs reversible hydrogen electrode), 125% higher than that of the Ti:Fe2O3 photoanode. The optimized ηinj and ηsep of 91.6 and 23.0% at 1.23 VRHE are achieved on Co‐Pi/Co3O4/Ti:Fe2O3, respectively, corresponding to the 70 and 43% improvements compared with those of Ti:Fe2O3. Furthermore, Co‐Pi/Co3O4/Ti:Fe2O3 shows a low onset potential of 0.64 VRHE and long‐time PEC stability.  相似文献   

5.
6.
For cancer diagnosis, 1H magnetic resonance imaging (MRI) is advantageous in sensitivity but lacks selectivity. Endogenous 19F MRI signal in humans is barely detectable and thus 19F MRI has very high selectivity. A combination of 1H and 19F MRI is ideal for precise tumor imaging but a protease‐controlled strategy of simultaneous T2 1H MRI enhancement and 19F MRI “Turn‐On” has not been reported. Here, used is a click condensation reaction to rationally project a dual‐functional fluorine probe 4‐(trifluoromethyl)benzoic acid (TFMB)‐Arg‐Val‐Arg‐Arg‐Cys(StBu)‐Lys‐CBT ( 1 ), which is further utilized to functionalize Fe3O4 nanoparticle ( IONP ) to achieve IONP@1 . As such, the IONP aggregation can be activated by furin addition, thereby enhancing the T2 1H MRI signal and switching the 19F NMR/MRI signal “On”. Using this strategy, IONP@1 is successfully applied to detect the activity of the furin enzyme with “Turn‐On” 19F NMR/MRI and T2 1H MRI signals are enhanced. Moreover, IONP@1 is also applied for precise dual‐mode (1H and 19F) MR imaging of tumors in zebrafish under 14.1 T. The current approach, therefore, provides a feasible and robust means to reconcile the dilemma between selectivity and sensitivity of conventional MRI probes. More importantly, it is envisioned that, by substituting the TFMB moiety in 1 with a perfluorinated compound, this “smart” method could be of potential use for precise 1H MR and 19F MR imaging of tumor in mouse or in bigger rodents in near future.  相似文献   

7.
Hollow carbon materials are considered promising sulfur reservoirs for lithium–sulfur batteries owing to their internal void space and porous conductive shell, providing high loading and utilization of sulfur. Since the pores in carbon materials play a critical role in the infusion of sulfur, access of the electrolyte, and the passage of lithium polysulfides (LPSs), the creation and tuning of hierarchical pore structures is strongly required to improve the electrochemical properties of sulfur/porous carbon composites, but remains a major challenge. Herein, a “brain‐coral‐like” mesoporous hollow carbon nanostructure consisting of an in situ‐grown N‐doped graphitic carbon nanoshell (NGCNs) matrix and embedded CoS2 nanoparticles as an efficient sulfur host is presented. The rational synthetic design based on metal–organic framework chemistry furnishes unusual multiple porosity in a carbon scaffold with a macrohollow in the core and microhollows and mesopores in the shell, without the use of any surfactant or template. The CoS2@NGCNs/S composite electrode facilitates high sulfur loading (75 wt%), strong adsorption of LPSs, efficient reaction kinetics, and stable cycle performance (903 mAh g?1 at 0.1 C after 100 cycles), derived from the synergetic effects of the dual hollow features, chemically active CoS2, and the conductive and mesoporous N‐doped carbon matrix.  相似文献   

8.
The surface plasmon (SP) modulation is a promised way to highly improve the strength of upconversion luminescence (UCL) and expand its applications. In this work, the “islands” Au–Ag alloy film is prepared by an organic removal template method and explored to improve the UCL of NaYF4: Yb3+, Tm3+/Er3+. After the optimization of Au–Ag molar ratio (Au1.25–Ag0.625) and the size of NaYF4 nanoparticles (NPs, ≈7 nm), an optimum enhancement as high as 180 folds is obtained (by reflection measurement) for the overall UCL intensity of Tm3+. Systematic studies indicate that the UCL enhancement factor (EF) increases with the increased size of metal NPs and the increase of diffuse reflection, with the decreased size of NaYF4 NPs, with the decreased power density of excitation light and with improving order of multiphoton populating. The total decay rate varies only ranging of about 20% while EF changes significantly. All the facts above indicate that the UCL enhancement mainly originates from coupling of SP with the excitation electromagnetic field. Furthermore, the fingerprint identification based on SP‐enhanced UCL is realized in the metal/UC system, which provides a novel insight for the application of the metal/UC device.  相似文献   

9.
Based on the combined technologies of atomic force microscopy, X‐ray diffraction/scattering, Fourier transform infrared spectra analysis, etc., it is demonstrated that the nano‐fishnet‐like networks, one of the most flexible but toughest structures, turn out to be the basic structure of silk filaments. The force patterns of pulling individual fibrils allow the identification of the pathways of unfolding protein segments in stacking β‐crystallites, which reveal the fishnet‐like topology. The calculation shows that the β‐crystallites in silk nanofibrils are the cross‐linking points of the nano‐fishnets, which may enhance the toughness of silk filaments up to 1000 times, compared with amyloid‐like and unlinked string structures. It follows that the strong β‐sheet–β‐sheet interaction, a high degree of ordering, and a high density of β‐crystallites in silk fibers toughen the fishnet structure, then strengthen silk filaments, in consistency with the experiments for both spider and silkworm silks. The knowledge on the fishnet structure of silk fibers sheds light on the design and synthesis of either protein or synthetic fibers of ultraperformance in a more generic way.  相似文献   

10.
To achieve the accurate diagnosis of tumor with the magnetic resonance imaging (MRI), nanomaterials‐based contrast agents are developed rapidly. Here, a tumor targeting nanoprobe of c(RGDyK) modified ultrasmall sized iron oxide is reported with high saturation magnetization and high T1‐weighted imaging capability, attributed to a large number of paramagnetic centers on the surface of nanoprobes and rapid water proton exchange rate (inner sphere model), as well as strong superparamagnetism (outer sphere model). These nanoprobes could actively target and gradually accumulate at the tumor site with a time‐dependent T1–T2 contrast enhancement imaging effect. In in vivo MRI experiments, the nanoprobes exhibit the best T1 contrast enhancement at 30 min after intravenous administration, followed by gradually vanishing and generating T2 contrast enhancement with increasing time at tumor site. This is likely due to time‐dependent nanoprobes aggregation in tumor, in good agreement with in vitro experiment where aggregated nanoprobes display larger r2/r1 value (19.1) than that of the dispersed nanoprobes (2.8). This dynamic property is completely different from other T1‐T2 dual‐modal nanoprobes which commonly exhibit the T1‐ and T2‐weighted enhancement effect at the same time. To sum up, these c(RGDyK) modified ultrasmall Fe3O4 nanoprobes have significant potential to improve the diagnostic accuracy and sensitivity in MRI.  相似文献   

11.
Blocking cancer metabolism represents an attractive therapeutic strategy for cancer treatment. However, the lack of selective mitochondria targeting compromises the efficacy and safety of antimetabolic agents. Given that β‐glucuronidase (β‐G) is overexpressed in the tumor extracellular microenvironment and intracellular endosomes and lysosomes, a new concept of “pro‐staramine” is proposed to achieve multistage tumor mitochondrial targeting. The pro‐staramine, namely GluAcNA, is engineered by conjugating a β‐glucuronic acid to staramine via a “seamless” linker. When exposed to β‐G, the β‐glucuronic acid in GluAcNA can be hydrolyzed, followed by a rapid 1,6‐self‐elimination of the “seamless”, thus transforming anionic GluAcNA to cationic staramine. Liposomes containing GluAcNA (GluAcNA‐Lip) show long‐circulating characteristics and undergo a sequentially β‐G‐triggered activation, resulting in a cation‐driven mitochondrial accumulation. The multistage mitochondrial targeting and the promising antitumoral efficacy of GluAcNA‐Lip are validated by employing lonidamine as a model drug.  相似文献   

12.
Dual metal–organic frameworks (MOFs, i.e., MIL‐100(Fe) and ZIF‐8) are thermally converted into Fe–Fe3C‐embedded Fe–N‐codoped carbon as platinum group metal (PGM)‐free oxygen reduction reaction (ORR) electrocatalysts. Pyrolysis enables imidazolate in ZIF‐8 rearranged into highly N‐doped carbon, while Fe from MIL‐100(Fe) into N‐ligated atomic sites concurrently with a few Fe–Fe3C nanoparticles. Upon precise control of MOF compositions, the optimal catalyst is highly active for the ORR in half‐cells (0.88 V in base and 0.79 V versus RHE in acid in half‐wave potential), a proton exchange membrane fuel cell (0.76 W cm?2 in peak power density) and an aprotic Li–O2 battery (8749 mAh g?1 in discharge capacity), representing a state‐of‐the‐art PGM‐free ORR catalyst. In the material, amorphous carbon with partial graphitization ensures high active site exposure and fast charge transfer simultaneously. Macropores facilitate mass transport to the catalyst surface, followed by oxygen penetration in micropores to reach the infiltrated active sites. Further modeling simulations shed light on the true Fe–Fe3C contribution to the catalyst performance, suggesting Fe3C enhances oxygen affinity, while metallic Fe promotes *OH desorption as the rate‐determining step at the nearby Fe–N–C sites. These findings demonstrate MOFs as model system for rational design of electrocatalyst for energy‐based functional applications.  相似文献   

13.
Different dispersion near the electronic band edge of a semiconductor can have great influence on its transport, thermoelectric, and optical properties. Using first‐principles calculations, it is demonstrated that a new phase of group‐IV monochalcogenides (γ‐MX, M = Ge, Sn; X = S, Se, or Te) can be stabilized in monolayer limit. γ‐MXs are shown to possess a unique band dispersion—that is, camel's back like structure—in the top valence band. The band nesting effect near the camel's back region induces a large excitonic absorbance and significantly different exciton behaviors from other 2D materials. Importantly, the small effective mass and the indirect characteristics of lowest‐energy exciton render it advantageous for the generation of electron–hole liquid state. After careful evaluation of the electron–hole dissociation temperature and the Mott critical density, it is predicted that a high‐temperature exciton gas to electron–hole liquid phase transition can be achieved in these materials with a low excitation power density. The findings open up new opportunities for both the fundamental research on exciton physics and design of excitonic devices based on 2D materials with distinct band dispersion.  相似文献   

14.
15.
Hyperbranched polyglycerol‐grafted, magnetic Fe3O4 nanoparticles (HPG‐grafted MNPs) are successfully synthesized by surface‐initiated ring‐opening multibranching polymerization of glycidol. Reactive hydroxyl groups are immobilized on the surface of 6–9 nm Fe3O4 nanoparticles via effective ligand exchange of oleic acid with 6‐hydroxy caproic acid. The surface hydroxyl groups are treated with aluminum isopropoxide to form the nanosized macroinitiators. The successful grafting of HPG onto the nanoparticles is confirmed by infrared and X‐ray photoelectron spectroscopy. The HPG‐grafted MNPs have a uniform hydrodynamic diameter of (24.0 ± 3.0) nm, and are very stable in aqueous solution, as well as in cell culture medium, for months. These nanoparticles have great potential for application as a new magnetic resonance imaging contrast agent, as evidenced by their lack of cytotoxicity towards mammalian cells, low uptake by macrophages, excellent stability in aqueous medium and magnetic fields, and favorable magnetic properties. Furthermore, the possibility of functionalizing the hydroxyl end‐groups of the HPG with cell‐specific targeting ligands will expand the range of applications of these MNPs.  相似文献   

16.
Long blood circulation in vivo remains a challenge to dual‐drug‐loaded nanocarriers for synergistic chemotherapy. Herein, a novel strategy to prepare lollipop‐like dual‐drug‐loaded nanoparticles (DOX–PDA–gossypol NPs) is developed based on the self‐assembly of gossypol, doxorubicin (DOX), and polydopamine (PDA) via π–π stacking. Dopamine polymerizes to PDA and fills the gaps between the gossypol and DOX molecules to form the super compact long‐circulating nanoparticles. The DOX–PDA–gossypol NPs show a suitable particle size of 59.6 ± 9.6 nm, high drug loading of 91%, superb stability, high maximum‐tolerated dose (MTD) of over 60 mg kg‐1, and negligible toxicity. These NPs also exhibit pH‐dependent drug release and low combination index (0.23). Notably, they show dramatically ultralong blood circulation (>192 h) with elimination half times 458‐fold and 258‐fold longer than that of free DOX and free gossypol, respectively. These values are markedly higher than most of the reported results. Therefore, the DOX–PDA–gossypol NPs have a high tumor accumulation of 12% remaining on the 8th day postinjection. This characteristic contributes to the excellent tumor comprehensive synergistic therapeutic efficacy (TIR > 90%) with low administration dosage and is benefitted for widening the drug therapeutic window. Thus, the proposed strategy has remarkable potential for tumor synergistic therapy.  相似文献   

17.
18.
The Bi2Te3?xSex family has constituted n‐type state‐of‐the‐art thermoelectric materials near room temperature (RT) for more than half a century, which dominates the active cooling and novel heat harvesting application near RT. However, the drawbacks of a brittle nature and Te‐content restricts the possibility for exploring potential applications. Here, it is shown that the Mg3+δSbxBi2?x family ((ZT)avg = 1.05) could be a promising substitute for the Bi2Te3?xSex family ((ZT)avg = 0.9–1.0) in the temperature range of 50–250 °C based on the comparable thermoelectric performance through a synergistic effect from the tunable bandgap using the alloy effect and the suppressible Mg‐vacancy formation using an interstitial Mn dopant. The former is to shift the optimal thermoelectric performance to near RT, and the latter is helpful to partially decouple the electrical transport and thermal transport in order to get an optimal RT power factor. The positive temperature dependence of the bandgap suggests this family is also a superior medium‐temperature thermoelectric material for the significantly suppressed bipolar effect. Furthermore, a two times higher mechanical toughness, compared with the Bi2Te3?xSex family, allows for a promising substitute for state‐of‐the‐art n‐type thermoelectric materials near RT.  相似文献   

19.
As one of the emerging new transition‐metal dichalcogenides materials, molybdenum ditelluride (α‐MoTe2) is attracting much attention due to its optical and electrical properties. This study fabricates all‐2D MoTe2‐based field effect transistors (FETs) on glass, using thin hexagonal boron nitride and thin graphene in consideration of good dielectric/channel interface and source/drain contacts, respectively. Distinguished from previous works, in this study, all 2D FETs with α‐MoTe2 nanoflakes are dual‐gated for driving higher current. Moreover, for the present 2D dual gate FET fabrications on glass, all thermal annealing and lithography processes are intentionally exempted for fully non‐lithographic method using only van der Waal's forces. The dual‐gate MoTe2 FET displays quite a high hole and electron mobility over ≈20 cm2 V?1 s?1 along with ON/OFF ratio of ≈105 in maximum as an ambipolar FET and also demonstrates high drain current of a few tens‐to‐hundred μA at a low operation voltage. It appears promising enough to drive organic light emitting diode pixels and NOR logic functions on glass.  相似文献   

20.
A β‐FeSi2–SiGe nanocomposite is synthesized via a react/transform spark plasma sintering technique, in which eutectoid phase transformation, Ge alloying, selective doping, and sintering are completed in a single process, resulting in a greatly reduced process time and thermal budget. Hierarchical structuring of the SiGe secondary phase to achieve coexistence of a percolated network with isolated nanoscale inclusions effectively decouples the thermal and electrical transport. Combined with selective doping that reduces conduction band offsets, the percolation strategy produces overall electron mobilities 30 times higher than those of similar materials produced using typical powder‐processing routes. As a result, a maximum thermoelectric figure of merit ZT of ≈0.7 at 700 °C is achieved in the β‐FeSi2–SiGe nanocomposite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号