首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stem cells have shown great potential in regenerative medicine and attracted tremendous interests in recent years. Sensitive and reliable methods for stem cell labeling and in vivo tracking are thus urgently needed. Here, a novel approach to label human mesenchymal stem cells (hMSCs) with single‐walled carbon nanotubes (SWNTs) for in vivo tracking by triple‐modal imaging is presented. It is shown that polyethylene glycol (PEG) functionalized SWNTs conjugated with protamine (SWNT‐PEG‐PRO) exhibit extremely efficient cell entry into hMSCs, without affecting their proliferation and differentiation. The strong inherent resonance Raman scattering of SWNTs is used for in vitro and in vivo Raman imaging of SWNT‐PEG‐PRO‐labeled hMSCs, enabling ultrasensitive in vivo detection of as few as 500 stem cells administrated into mice. On the other hand, the metallic catalyst nanoparticles attached on nanotubes can be utilized as the T2‐contrast agent in magnetic resonance (MR) imaging of SWNT‐labeled hMSCs. Moreover, in vivo photoacoustic imaging of hMSCs in mice is also demonstrated. The work reveals that SWNTs with appropriate surface functionalization have the potential to serve as multifunctional nanoprobes for stem cell labeling and multi‐modal in vivo tracking.  相似文献   

2.
Stem cells have generated a great deal of excitement in cell‐based therapies. Here, a unique class of multifunctional nanoparticles (MFNPs) with both upconversion luminescence (UCL) and superparamagnetic properties is used for stem cell research. It is discovered that after being labeled with MFNPs, mouse mesenchymal stem cells (mMSCs) are able to maintain their viability and differentiation ability. In vivo UCL imaging of MFNP‐labeled mMSCs transplanted into animals is carried out, achieving ultrahigh tracking sensitivity with a detection limit as low as ≈10 cells in a mouse. Using both UCL optical and magnetic resonance (MR) imaging approaches, MFNP‐labeled mMSCs are tracked after being intraperitoneally injected into wound‐bearing mice under a magnetic field. The translocation of mMSCs from the injection site to the wound nearby the magnet is observed and, intriguingly, a remarkably improved tissue repair effect is observed as the result of magnetically induced accumulation of stem cells in the wound site. The results demonstrate the use MFNPs as novel multifunctional probes for labeling, in vivo tracking, and manipulation of stem cells, which is promising for imaging guided cell therapies and tissue engineering.  相似文献   

3.
Stem cell therapeutics has emerged as a novel regenerative therapy for tissue repair in the last decade. However, dynamically tracking the transplanted stem cells in vivo remains a grand challenge for stem cell‐based regeneration medicine in full understanding the function and the fate of the stem cells. Herein, Ag2S quantum dots (QDs) in the second near‐infrared window (NIR‐II, 1.0–1.4 μm) are employed for dynamically tracking of human mesenchymal stem cells (hMSCs) in vivo with high sensitivity and high spatial and temporal resolution. As few as 1000 Ag2S QDs‐labeled hMSCs are detectable in vivo and their fluorescence intensity can maintain up to 30 days. The in situ translocation and dynamic distribution of transplanted hMSCs in the lung and liver can be monitored up to 14 days with a temporal resolution of 100 ms. The in vivo high‐resolution imaging indicates the heparin‐facilitated translocation of hMSCs from lung to liver as well as the long‐term retention of hMSCs in the liver contribute to the treatment of liver failure. The novel NIR‐II imaging offers a possibility of tracking stem cells in living animals with both high spatial and temporal resolution, and encourages the future clinical applications in imaging‐guided cell therapies.  相似文献   

4.
The in vivo tracking of adipose derived stem cells (ASCs) is of essential concern when they are used as seed cells in tissue engineering. This study explores the feasibility of using magnetic nanoparticles (MNs), a type of contrast agents in magnetic resonance imaging (MRI), to label ASCs such that the labeled ASCs could be tracked in vivo by MRI non‐invasively and repeatedly. To do this, MNs of <10 nm surface‐coated with oleic acid are synthesized via a high‐temperature solution‐phase reaction. Cytotoxicity of the as‐synthesized MNs at concentrations up to 0.1 mg mL?1 on 104 cells mL?1 ASCs is evaluated by LDH release. Since only minor cytotoxicity is detected, the effects of the labeling technique on cellular behaviors and uptake by labeled cells are investigated. Cell proliferation and differentiation with and without MNs are compared. The results show that proliferation of ASCs (104 cells mL?1) labeled by MNs (0.05 mg mL?1) is significantly enhanced and dependent on the labeling time. The MNs are located in the vesicles within cytoplasm of ASCs. The cellular uptake reaches as high as ~180 pg/cell. Nevertheless, the labeled ASCs still maintained adipogenic and osteogenic differentiation. Hence, the feasibility of labeling ASCs by oleic acid coated MNs is ascertained and it was better to label the cells during their quiescent stage. The labeled ASCs can also be in vivo detected by MRI in a subcutaneous model in vivo. Further MRI tracking of the labeled ASCs in long‐term follow‐up would thus follow this current study.  相似文献   

5.
Developing in vivo cell tracking is an important prerequisite for further development of cell‐based therapy. So far, few computed tomography (CT) cell tracking studies have been described due to its notoriously low sensitivity and lack of efficient labeling protocols. A simple method is presented to render human mesenchymal stem cells (hMSCs) sufficiently radiopaque by complexing 40 nm citrate‐stabilized gold nanoparticles (AuNPs) with poly‐l ‐lysine (PLL) and rhodamine B isothiocyanate (RITC). AuNP‐PLL‐RITC labeling does not affect cellular viability, proliferation, or downstream cell differentiation into adipocytes and osteocytes. Labeled hMSCs can be clearly visualized in vitro and in vivo with a micro‐CT scanner, with a detection limit of ≈2 × 104 cells per µL in vivo. Calculated Hounsfield unit values are 2.27 per pg of intracellular Au, as measured with inductively coupled plasma mass spectrophotometry, and are linear over a wide range of cell concentrations. This linear CT attenuation is observed for both naked AuNPs and those that were taken up by hMSCs, indicating that the number of labeled cells can be quantified similar to the use of radioactive or fluorine tracers. This approach for CT cell tracking may find applications in CT image‐guided interventions and fluoroscopic procedures commonly used for the injection of cellular therapeutics.  相似文献   

6.
Here, design of the first pathogen‐mimicking metal oxide nanoparticles with the ability to enter cancer cells and to selectively target and activate the TLR9 pathway, and with optical and MR imaging capabilities, is reported. The immobilization of ssDNA (CpG ODN 2006) on MnO nanoparticles is performed via the phosphoramidite route using a multifunctional polymer. The multifunctional polymer used for the nanoparticle surface modification not only affords a protective organic biocompatible shell but also provides an efficient and convenient means for loading immunostimulatory oligonucleotides. Since fluorescent molecules are amenable to photodetection, a chromophore (Rhodamine) is introduced into the polymer chain to trace the nanoparticles in Caki‐1 (human kidney cancer) cells. The ssDNA coupled nanoparticles are used to target Toll‐like receptors 9 (TLR9) receptors inside the cells and to activate the classical TLR cascade. The presence of TLR9 is demonstrated independently in the Caki‐1 cell line by western blotting and immunostaining techniques. The magnetic properties of the MnO core make functionalized MnO nanoparticles potential diagnostic agents for magnetic resonance imaging (MRI) thereby enabling multimodal detection by a combination of MR and optical imaging methods. The trimodal nanoparticles allow the imaging of cellular trafficking by different means and simultaneously are an effective drug carrier system.  相似文献   

7.
The in vivo distribution, viability, and differentiation capability of transplanted stem cells are vital for the therapeutic efficacy of stem cell–based therapy. Herein, an NIR‐II fluorescence/dual bioluminescence multiplexed imaging method covering the visible and the second near‐infrared window from 400 to 1700 nm is successfully developed for in vivo monitoring the location, survival, and osteogenic differentiation of transplanted human mesenchymal stem cells (hMSCs) in a calvarial defect mouse model. The exogenous Ag2S quantum dot–based fluorescence imaging in the second near‐infrared window is applied for visualizing the long‐term biodistribution of transplanted hMSCs. Endogenous red firefly luciferase (RFLuc)‐based bioluminescence imaging (BLI) and the collagen type 1 promoter–driven Gaussia luciferase (GLuc)‐based BLI are employed to report the survival and osteogenic differentiation statuses of the transplanted hMSCs. Meanwhile, by integrating the three imaging channels, multiple dynamic biological behaviors of transplanted hMSCs and the promotion effects of immunosuppression and the bone morphogenetic protein 2 on the survival and osteogenic differentiation of transplanted hMSCs are directly observed. The novel multiplexed imaging method can greatly expand the capability for multifunctional analysis of the fates and therapeutic capabilities of the transplanted stem cells, and aid in the improvement of stem cell–based regeneration therapies and their clinical translation.  相似文献   

8.
Pluripotent stem cells are central tools to many regenerative medicine strategies due to their ability to differentiate toward the three embryonic germ layers. One challenge remains in providing control over their differentiation into specific lineages, such as cardiac commitment. Here, the possibility of directing cardiomyogenesis of embryonic stem cells using a microfabricated magnetic pattern is demonstrated. The stem cells are labeled with magnetic nanoparticles, aggregated into embryoid bodies (EBs) onto the pattern, and stimulated with a local magnetic force applied via the pattern. The EBs formed on this magnetic device experience the same differentiation profile as the ones created by the common hanging drop approach, while it allows high‐throughput production of hundreds of EBs. Further on/off cyclic magnetic force stimulation mediated by the same device is sufficient to enhance cardiomyogenesis in a way that almost all EBs develop spontaneous beating, confirmed by the overexpression of α‐actin and troponin proteins, and by the upregulation (twofold to fivefold) of genes involved in mesoderm differentiation (Nkx2.5, Gata4, and Gata6), and more specifically cardiac lineage (Tnnt2, Myh6, and Myl‐2). Beyond holding high application‐level potential, this work confirms that physical forces, and specifically on/off dynamic ones can be sufficient to govern cell function.  相似文献   

9.
Multimodal nanostructures can help solve many problems in the biomedical field including sensitive molecular imaging, highly specific therapy, and early cancer detection. However, the synthesis of densely packed, multicomponent nanostructures with multimodal functionality represents a significant challenge. Here, a new type of hybrid magneto‐plasmonic nanoparticles is developed using an oil‐in‐water microemulsion method. The nanostructures are synthetized by self‐assembly of primary 6 nm iron oxide core‐gold shell particles resulting into densely packed spherical nanoclusters. The dense packing of primary particles does not change their superparamagnetic behavior; however, the close proximity of the constituent particles in the nanocluster leads to strong near‐infrared (NIR) plasmon resonances. The synthesis is optimized to eliminate nanocluster cytotoxicity. Immunotargeted nanoclusters are also developed using directional conjugation chemistry through the Fc antibody moiety, leaving the Fab antigen recognizing region available for targeting. Cancer cells labeled with immunotargeted nanoclusters produce a strong photoacoustic signal in the NIR that is optimum for tissue imaging. Furthermore, the labeled cells can be efficiently captured using an external magnetic field. The biocompatible magneto‐plasmonic nanoparticles can make a significant impact in development of point‐of‐care assays for detection of circulating tumor cells, as well as in cell therapy with magnetic cell guidance and imaging monitoring.  相似文献   

10.
Here, novel nanoprobes for combined optical and magnetic resonance (MR) bioimaging are reported. Fluoride (NaYF4) nanocrystals (20–30 nm size) co‐doped with the rare earth ions Gd3+ and Er3+/Yb3+/Eu3+ are synthesized and dispersed in water. An efficient up‐ and downconverted photoluminescence from the rare‐earth ions (Er3+ and Yb3+ or Eu3+) doped into fluoride nanomatrix allows optical imaging modality for the nanoprobes. Upconversion nanophosphors (UCNPs) show nearly quadratic dependence of the photoluminescence intensity on the excitation light power, confirming a two‐photon induced process and allowing two‐photon imaging with UCNPs with low power continuous wave laser diodes due to the sequential nature of the two‐photon process. Furthermore, both UCNPs and downconversion nanophosphors (DCNPs) are modified with biorecognition biomolecules such as anti‐claudin‐4 and anti‐mesothelin, and show in vitro targeted delivery to cancer cells using confocal microscopy. The possibility of using nanoprobes for optical imaging in vivo is also demonstrated. It is also shown that Gd3+ co‐doped within the nanophosphors imparts strong T1 (Spin‐lattice relaxation time) and T2 (spin‐spin relaxation time) for high contrast MR imaging. Thus, nanoprobes based on fluoride nanophosphors doped with rare earth ions are shown to provide the dual modality of optical and magnetic resonance imaging.  相似文献   

11.
In the present study, a biomimetic nanoconstruct (BNc) with a multimodal imaging system is engineered using tumor homing natural killer cell membrane (NKM), near‐infrared (NIR) fluorescent dye, and gadolinium (Gd) conjugate‐based magnetic resonance imaging contrast agent onto the surface of a polymeric nanoparticle. The engineered BNc is 110 ± 20 nm in size and showed successful retention of NKM proteins. The magnetic properties of the BNc are found to be tunable from 2.1 ± 0.17 to 5.3 ± 0.5 mm ?1 s?1 under 14.1 T, by adjusting the concentration of Gd‐lipid conjugate onto the surface of the BNc. Confocal imaging and cell sorting analysis reveal a distinguishable cellular interaction of the BNc with MCF‐7 cells in comparison to that of bare polymeric nanoparticles suggesting the tumor homing properties of NKM camouflage system. The in vitro cellular interaction results are further confirmed by in vivo NIR fluorescent tumor imaging and ex vivo MR imaging, respectively. Pharmacokinetics and biodistribution analysis of the BNc show longer circulation half‐life (≈9.5 h) and higher tumor accumulation (10% of injected dose) in MCF‐7 induced tumor‐bearing immunodeficient NU/NU nude mice. Owing to the proven immunosurveillance potential of NK‐cell in the field of immunotherapy, the BNc engineered herein would hold promises in the design consideration of nanomedicine engineering.  相似文献   

12.
Recently, near‐infrared (NIR) absorbing conjugated polymeric nanoparticles have received significant attention in photothermal therapy of cancer. Herein, polypyrrole (PPy), a NIR‐absorbing conjugate polymer, is used to coat ultra‐small iron oxide nanoparticles (IONPs), obtaining multifunctional IONP@PPy nanocomposite which is further modified by the biocompatible polyethylene glycol (PEG) through a layer‐by‐layer method to acquire high stability in physiological solutions. Utilizing the optical and magnetic properties of the yielded IONP@PPy‐PEG nanoparticles, in vivo magnetic resonance (MR) and photoacoustic imaging of tumor‐bearing mice are conducted, revealing strong tumor uptake of those nanoparticles after intravenous injection. In vivo photothermal therapy is then designed and carried out, achieving excellent tumor ablation therapeutic effect in mice experiments. These results promise the use of multifunctional NIR‐absorbing organic‐inorganic hybrid nanomaterials, such as IONP@PPy‐PEG presented here, for potential applications in cancer theranostics.  相似文献   

13.
Cartilage loss is a leading cause of disability among adults, and effective therapy remains elusive. Human mesenchymal stem cells (hMSCs), which have demonstrated self‐renewal and multipotential differentiation, are a promising cell source for cartilage repair. However, the hypertrophic differentiation of the chondrogenically induced MSCs and resulting tissue calcification hinders the clinical translation of MSCs for cartilage repair. Here, a multifunctional nanocarrier based on quantum dots (QDs) is developed to enhance chondrogenic differentiation and suppress hypertrophy of hMSCs simultaneously. Briefly, the QDs are modified with β‐cyclodextrin (β‐CD) and RGD peptide. The resulting nanocarrier is capable of carrying hydrophobic small molecules such as kartogenin in the hydrophobic pockets of conjugated β‐CD to induce chondrogenic differentiation of hMSCs. Meanwhile, via electrostatic interaction the conjugated RGD peptides bind the cargo siRNA targeting Runx2, which is a key regulator of hMSC hypertrophy. Furthermore, due to the excellent photostability of QDs, hMSCs labeled with the nanocarrier can be tracked for up to 14 d after implantation in nude mice. Overall, this work demonstrates the potential of our nanocarrier for inducing and maintaining the chondrogenic phenotype and tracking hMSCs in vivo.  相似文献   

14.
The booming development of nanomedicine offers great opportunities for cancer diagnostics and therapeutics. Herein, a magnetic targeting‐enhanced cancer theranostic strategy using a multifunctional magnetic‐plasmonic nano‐agent is developed, and a highly effective in vivo tumor photothermal therapy, which is carefully planed based on magnetic resonance (MR)/photoacoustic (PA) multimodal imaging, is realized. By applying an external magnetic field (MF) focused on the targeted tumor, a magnetic targeting mediated enhanced permeability and retention (MT‐EPR) effect is observed. While MR scanning provides tumor localization and reveals time‐dependent tumor homing of nanoparticles for therapeutic planning, photoacoustic imaging with higher spatial resolution allows noninvasive fine tumor margin delineation and vivid visualization of three dimensional distributions of theranostic nanoparticles inside the tumor. Utilizing the near‐infrared (NIR) plasmonic absorbance of those nanoparticles, selective photothermal tumor ablation, whose efficacy is predicted by real‐time infrared thermal imaging intra‐therapeutically, is carried out and then monitored by MR imaging for post‐treatment prognosis. Overall, this study illustrates the concept of imaging‐guided MF‐targeted photothermal therapy based on a multifunctional nano‐agent, aiming at optimizing therapeutic planning to achieve the most efficient cancer therapy.  相似文献   

15.
A one‐pot synthesis of glutathione (denoted as ‐SG) capped gold nanoparticles, including Au25(SG)18 (ca. 1 nm in diameter) 2‐ and 4‐nm particles is reported. These nanoparticles are isolated by methanol‐induced precipitation with a controlled amount of added methanol. Except for their particle size, these nanoparticles have an identical chemical composition (i.e., gold and ‐SG content), synthetic history, and surface conditions, which allows for precise comparison of their size‐dependent properties, in particular the magnetic property as this could be attributed to contamination by trace iron impurities. Specifically, the structure, optical, and magnetic properties of these gold nanoparticles are compared. A trend from non‐fcc (fcc = face centered cubic) Au25(SG)18 nanoclusters (ca. 1 nm) to 2‐ and 4‐nm fcc‐crystalline Au nanocrystals is revealed. The Au25(SG)18 nanoparticles resemble molecules and exhibit multiple optical absorption peaks ascribed to one‐electron transitions, whereas the 4‐nm nanoparticles exhibit surface plasmon resonance at around 520 nm related to the collective excitation of conduction electrons upon optical excitation. The transition from the non‐fcc cluster state to the fcc crystalline state occurs at around 2 nm. Interestingly, both 2‐ and 4‐nm particles exhibit paramagnetism, whereas the Au25(SG)18 (anionic) clusters are diamagnetic. The information attained on the evolution of the properties of nanoparticles from nanoclusters to fcc‐structured nanocrystals is of major importance and provides insight into structure—property relationships.  相似文献   

16.
Cell labeling and tracking via magnetic resonance imaging (MRI) has drawn much attention for its noninvasive property and longitudinal monitoring functionality. Employing of imaging probes with high labeling efficiency and good biocompatibility is one of the essential factors that determine the outcome of tracking. In this study, negatively charged superparamagnetic iron oxide (PAsp‐PCL/SPIO) nanoclusters are developed for dendritic cell (DC) labeling and tracking in vivo. PAsp‐PCL/SPIO has a diameter of 124 ± 41 nm in DLS, negatively charged surface (zeta potential = ?27 mV), and presents high T 2 relaxivity (335.6 Fe mm ?1 s?1) and good DC labeling efficiency. Labeled DCs are unaffected in their viability, proliferation, and differentiation capacity, and have an excellent MR imaging sensitivity in vitro. To monitor the migration of DCs into lymphoid tissues in vivo, which will be related to the final immunotherapy results, T 2‐wighted and T 2‐map imaging of popliteal nodes at different points in time are acquired under a clinical 3 T scanner after subcutaneous injection of a certain number of labeled DCs at hindleg footpads of mice. The signal intensities decreasing and T 2 values shortening of ipsilateral popliteal nodes are significant and display a time‐ and dose‐dependence, showing DCs' migration to the draining lymph nodes.  相似文献   

17.
Stem cell–based therapies hold great promise in providing desirable solutions for diseases that cannot be effectively cured by conventional therapies. To maximize the therapeutic potentials, advanced cell tracking probes are essential to understand the fate of transplanted stem cells without impairing their properties. Herein, conjugated polymer (CP) nanodots are introduced as noninvasive fluorescent trackers with high brightness and low cytotoxicity for tracking of mesenchymal stem cells (MSCs) to reveal their in vivo behaviors. As compared to the most widely used commercial quantum dot tracker, CP nanodots show significantly better long‐term tracking ability without compromising the features of MSCs in terms of proliferation, migration, differentiation, and secretome. Fluorescence imaging of tissue sections from full‐thickness skin wound–bearing mice transplanted with CP nanodot‐labeled MSCs suggests that paracrine signaling of the MSCs residing in the regenerated dermis is the predominant contribution to promote skin regeneration, accompanied with a small fraction of endothelial differentiation. The promising results indicate that CP nanodots could be used as next generation of fluorescent trackers to reveal the currently ambiguous mechanisms in stem cell therapies through a facile and effective approach.  相似文献   

18.
Human embryonic stem cell‐derived cardiomyocytes (hESC‐CMs) have become promising tools to repair injured hearts. To achieve optimal outcomes, advanced molecular imaging methods are essential to accurately track these transplanted cells in the heart. In this study, it is demonstrated for the first time that a class of photoacoustic nanoparticles (PANPs) incorporating semiconducting polymers (SPs) as contrast agents can be used in the photoacoustic imaging (PAI) of transplanted hESC‐CMs in living mouse hearts. This is achieved by virtue of two benefits of PANPs. First, strong photoacoustic (PA) signals and specific spectral features of SPs allow PAI to sensitively detect and distinguish a small number of PANP‐labeled cells (2000) from background tissues. Second, the PANPs show a high efficiency for hESC‐CM labeling without adverse effects on cell structure, function, and gene expression. Assisted by ultrasound imaging, the delivery and engraftment of hESC‐CMs in living mouse hearts can be assessed by PANP‐based PAI with high spatial resolution (≈100 µm). In summary, this study explores and validates a novel application of SPs as a PA contrast agent to track labeled cells with high sensitivity and accuracy in vivo, highlighting the advantages of integrating PAI and PANPs to advance cardiac regenerative therapies.  相似文献   

19.
Hyperbranched polyglycerol‐grafted, magnetic Fe3O4 nanoparticles (HPG‐grafted MNPs) are successfully synthesized by surface‐initiated ring‐opening multibranching polymerization of glycidol. Reactive hydroxyl groups are immobilized on the surface of 6–9 nm Fe3O4 nanoparticles via effective ligand exchange of oleic acid with 6‐hydroxy caproic acid. The surface hydroxyl groups are treated with aluminum isopropoxide to form the nanosized macroinitiators. The successful grafting of HPG onto the nanoparticles is confirmed by infrared and X‐ray photoelectron spectroscopy. The HPG‐grafted MNPs have a uniform hydrodynamic diameter of (24.0 ± 3.0) nm, and are very stable in aqueous solution, as well as in cell culture medium, for months. These nanoparticles have great potential for application as a new magnetic resonance imaging contrast agent, as evidenced by their lack of cytotoxicity towards mammalian cells, low uptake by macrophages, excellent stability in aqueous medium and magnetic fields, and favorable magnetic properties. Furthermore, the possibility of functionalizing the hydroxyl end‐groups of the HPG with cell‐specific targeting ligands will expand the range of applications of these MNPs.  相似文献   

20.
A novel multifunctional drug‐delivery platform is developed based on cholesteryl succinyl silane (CSS) nanomicelles loaded with doxorubicin, Fe3O4 magnetic nanoparticles, and gold nanoshells (CDF‐Au‐shell nanomicelles) to combine magnetic resonance (MR) imaging, magnetic‐targeted drug delivery, light‐triggered drug release, and photothermal therapy. The nanomicelles show improved drug‐encapsulation efficiency and loading level, and a good response to magnetic fields, even after the formation of the gold nanoshell. An enhancement for T2‐weighted MR imaging is observed for the CDF‐Au‐shell nanomicelles. These nanomicelles display surface plasmon absorbance in the near‐infrared (NIR) region, thus exhibiting an NIR (808 nm)‐induced temperature elevation and an NIR light‐triggered and stepwise release behavior of doxorubicin due to the unique characteristics of the CSS nanomicelles. Photothermal cytotoxicity in vitro confirms that the CDF‐Au‐shell nanomicelles cause cell death through photothermal effects only under NIR laser irradiation. Cancer cells incubated with CDF‐Au‐shell nanomicelles show a significant decrease in cell viability only in the presence of both NIR irradiation and a magnetic field, which is attributed to the synergetic effects of the magnetic‐field‐guided drug delivery and the photothermal therapy. Therefore, such multicomponent nanomicelles can be developed as a smart and promising nanosystem that integrates multiple capabilities for effective cancer diagnosis and therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号