首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Due to their high theoretical specific capacity and energy density, Li? O2 batteries are considered as candidates for next‐generation battery systems in place of conventional Li‐ion batteries for advanced applications such as electric vehicles. However, low energy efficiency, poor cycle life, and Li‐metal safety issues make the use of Li? O2 batteries yet impractical. In addition, actual cell capacities are very low, and since only small‐scale electrodes are currently tested, it is hard to predict the properties of large‐size electrodes and cells, thus evaluating and judging real practical challenges related to this battery technology. In this work, the behavior of pouch‐type Li? O2 cells using 3 × 5 cm2 sized electrodes is investigated and it is confirmed that Li‐metal is a key issue for the upscale of Li? O2 cells. This study can help to determine which parameters are the most important for developing practical Li? O2 batteries.  相似文献   

2.
The large‐scale production of metal–air batteries, an appealing solution for next‐generation energy storage, requires low‐cost, earth‐abundant, and efficient oxygen electrode materials, yet insights into active catalyst structures and synergistic reactivity remain largely unknown. Here, a new bifunctional oxygen electrode based on nitrogen‐doped carbon nanotubes decorated by spinel CuCo2O4 quantum dots (CuCo2O4/N‐CNTs) is reported, outperforming the benchmark of state‐of‐the‐art noble metal catalysts. Combining spectroscopic characterization and electrochemical studies, a prominent synergetic effect between CuCo2O4 and N‐doped carbon nanotubes is uncovered: the high conductivity, large active surface area, and increase in the number of catalytic sites induced by Cu doping (i.e., Cu2+ and Cu?N) can be beneficial to the overall electrocatalytic activities. Remarkably, the native flexibility of CuCo2O4/N‐CNTs allows its direct use as reversible oxygen electrodes in Zn–air batteries either with liquid alkaline electrolyte or in the all‐solid‐state configuration. The prepared devices demonstrate excellent discharging/charging performance, large energy density (83.83 mW cm?2 in liquid state, 1.86 W g?1 in all‐solid‐state), and long lifetime (48 h in liquid state, 9 h in all‐solid‐state), holding great promise in the practical application of rechargeable metal–air batteries and other fuel cells.  相似文献   

3.
One of the major challenges to develop high‐performance lithium–oxygen (Li–O2) battery is to find effective cathode catalysts and design porous architecture for the promotion of both oxygen reduction reactions and oxygen evolution reactions. Herein, the synthesis of mesoporous carbon nanocubes as a new cathode nanoarchitecture for Li–O2 batteries is reported. The oxygen electrodes made of mesoporous carbon nanocubes contain numerously hierarchical mesopores and macropores, which can facilitate oxygen diffusion and electrolyte impregnation throughout the electrode, and provide sufficient spaces to accommodate insoluble discharge products. When they are applied as cathode catalysts, the Li–O2 cells deliver discharge capacities of 26 100 mA h g?1 at 200 mA g?1, which is much higher than that of commercial carbon black catalysts. Furthermore, the mesoporous nanocube architecture can also serve as a conductive host structure for other highly efficient catalysts. For instance, the Ru functionalized mesoporous carbon nanocubes show excellent catalytic activities toward oxygen evolution reactions. Li–O2 batteries with Ru functionalized mesoporous carbon nanocube catalysts demonstrate a high charge/discharge electrical energy efficiency of 86.2% at 200 mA g?1 under voltage limitation and a good cycling performance up to 120 cycles at 400 mA g?1 with the curtaining capacity of 1000 mA h g?1.  相似文献   

4.
Silicon (Si) and lithium metal are the most favorable anodes for high‐energy‐density lithium‐based batteries. However, large volume expansion and low electrical conductivity restrict commercialization of Si anodes, while dendrite formation prohibits the applications of lithium‐metal anodes. Here, uniform nanoporous Si@carbon (NPSi@C) from commercial alloy and CO2 is fabricated and tested as a stable anode for lithium‐ion batteries (LIBs). The porosity of Si as well as graphitization degree and thickness of the carbon layer can be controlled by adjusting reaction conditions. The rationally designed porosity and carbon layer of NPSi@C can improve electronic conductivity and buffer volume change of Si without destroying the carbon layer or disrupting the solid electrolyte interface layer. The optimized NPSi@C anode shows a stable cyclability with 0.00685% capacity decay per cycle at 5 A g?1 over 2000 cycles for LIBs. The energy storage mechanism is explored by quantitative kinetics analysis and proven to be a capacitance‐battery dual model. Moreover, a novel 2D/3D structure is designed by combining MXene and NPSi@C. As lithiophilic nucleation seeds, NPSi@C can induce uniform Li deposition with buffered volume expansion, which is proven by exploring Li‐metal deposition morphology on Cu foil and MXene@NPSi@C. The practical potential application of NPSi@C and MXene@NPSi@C is evaluated by full cell tests with a Li(Ni0.8Co0.1Mn0.1)O2 cathode.  相似文献   

5.
Rechargeable batteries with a Li metal anode and Ni‐rich Li[NixCoyMn1?x?y]O2 cathode (Li/Ni‐rich NCM battery) have been emerging as promising energy storage devices because of their high‐energy density. However, Li/Ni‐rich NCM batteries have been plagued by the issue of the thermodynamic instability of the Li metal anode and aggressive surface chemistry of the Ni‐rich cathode against electrolyte solution. In this study, a bi‐functional additive, adiponitrile (C6H8N2), is proposed which can effectively stabilize both the Li metal anode and Ni‐rich NCM cathode interfaces. In the Li/Ni‐rich NCM battery, the addition of 1 wt% adiponitrile in 0.8 m LiTFSI + 0.2 M LiDFOB + 0.05 M LiPF6 dissolved in EMC/FEC = 3:1 electrolyte helps to produce a conductive and robust Li anode/electrolyte interface, while strong coordination between Ni4+ on the delithiated Ni‐rich cathode and nitrile group in adiponitrile reduces parasitic reactions between the electrolyte and Ni‐rich cathode surface. Therefore, upon using 1 wt% adiponitrile, the Li/full concentration gradient Li[Ni0.73Co0.10Mn0.15Al0.02]O2 battery achieves an unprecedented cycle retention of 75% over 830 cycles under high‐capacity loading of 1.8 mAh cm?2 and fast charge–discharge time of 2 h. This work marks an important step in the development of high‐performance Li/Ni‐rich NCM batteries with efficient electrolyte additives.  相似文献   

6.
Lithium‐metal batteries are of particular interest for next‐generation electrical energy storage because of their high energy density on both volumetric and gravimetric bases. Effective strategies to stabilize the Li‐metal anode are the prerequisite for the progress of these exceptional storage technologies, such as Li–S and Li–O2 batteries. Various challenges, such as uneven Li electrodeposition, anode volume expansion, and dendrite‐induced short‐circuit have hindered the practical application of rechargeable Li‐metal batteries. Herein, a one‐step facile and cost‐effective strategy for stabilizing lithium‐metal batteries via 3D porous Cu current collector/Li‐metal composite anode is reported. The porous structure of the composite electrode provides a “cage” for the redeposition of “hostless” lithium and accommodates the anode volume expansion during cycling. Compared with planar Cu foil, its high specific surface area favors the electrochemical reaction kinetics and lowers the local current density along the anode. It leads to low interfacial resistance and stabilizes the Li electrodeposition. On this basis, galvanostatic measurements are performed on both symmetric cells and Li/Li4Ti5O12 cells and it is found that the electrodes exhibit exceptional abilities of promoting cell lifetime and stabilizing the cycling behavior. Although this work focuses on lithium metal, this novel tactic is easy to generalize to other metal electrodes.  相似文献   

7.
The large‐scale production of metal–air batteries, an appealing solution for next‐generation energy storage, requires low‐cost, earth‐abundant, and efficient oxygen electrode materials, yet insights into active catalyst structures and synergistic reactivity remain largely unknown. Here, a new bifunctional oxygen electrode based on nitrogen‐doped carbon nanotubes decorated by spinel CuCo2O4 quantum dots (CuCo2O4/N‐CNTs) is reported, outperforming the benchmark of state‐of‐the‐art noble metal catalysts. Combining spectroscopic characterization and electrochemical studies, a prominent synergetic effect between CuCo2O4 and N‐doped carbon nanotubes is uncovered: the high conductivity, large active surface area, and increase in the number of catalytic sites induced by Cu doping (i.e., Cu2+ and Cu? N) can be beneficial to the overall electrocatalytic activities. Remarkably, the native flexibility of CuCo2O4/N‐CNTs allows its direct use as reversible oxygen electrodes in Zn–air batteries either with liquid alkaline electrolyte or in the all‐solid‐state configuration. The prepared devices demonstrate excellent discharging/charging performance, large energy density (83.83 mW cm?2 in liquid state, 1.86 W g?1 in all‐solid‐state), and long lifetime (48 h in liquid state, 9 h in all‐solid‐state), holding great promise in the practical application of rechargeable metal–air batteries and other fuel cells.  相似文献   

8.
Efficient energy storage systems impact profoundly the renewable energy future. The performance of current electrical energy storage technologies falls well short of requirements for using electrical energy efficiently in transportation, commercial, and residential applications. This paper explores the possibility by using transition‐metal‐based complexes as active materials in a Li‐ion battery full cell that synergizes the concept of both lithium‐ion batteries and redox flow batteries. A cathode made from transition metal complex, [Fe(bpy)3](BF4)2, exhibits high discharge voltage approaching 4 V (vs Li/Li+). When coupled with a Li4Ti5O12 anode, the Li‐ion full battery exhibits a cell voltage exceeding 2.2 V and decent cycling efficiencies with Coulombic efficiency and energy/voltage efficiencies above 99% and 92%/93%, respectively. Such a Li‐ion battery full cell offers distinct features such as low cost and flexibility in molecular structure design. The result reveals a generic design route toward iron‐based complexes as cathode materials with good electrochemical performances.  相似文献   

9.
Li–CO2 batteries are regarded as a promising candidate for the next‐generation high‐performance electrochemical energy storage system owing to their ultrahigh theoretical energy density and environmentally friendly CO2 fixation ability. Until now, the majority of reported catalysts for Li–CO2 batteries are in the powder state. Thus, the air electrodes are produced in 2D rigid bulk structure and their electrochemical properties are negatively influenced by binder. The nondeformable feature and unsatisfactory performance of the cathode have already become the main obstacles that hinder Li–CO2 batteries toward ubiquity for wearable electronics. In this work, for the first time, a flexible hybrid fiber is reported comprising highly surface‐wrinkled and N‐doped carbon nanotube (CNT) networks anchored on metal wire as the cathode integrated with high performance and high flexibility for fiber‐shaped Li–CO2 battery. It exhibits a large discharge capacity as high as 9292.3 mAh g?1, an improved cycling performance of 45 cycles, and a decent rate capability. A quasi‐solid‐state flexible fiber‐shaped Li–CO2 battery is constructed to illustrate the advantages on mechanical flexibility of this fiber‐shaped cathode. Experiments and theoretical simulations prove that those doped pyridinic nitrogen atoms play a critical role in facilitating the kinetics of CO2 reduction and evolution reaction, thereby enabling distinctly enhanced electrochemical performance.  相似文献   

10.
Na‐O2 batteries have attracted extensive attention as promising candidates for large‐scale energy storage due to their ultrahigh theoretical energy density. However, the poor cycling performance of Na‐O2 batteries is one of the major challenges facing its future development. A novel Na‐O2 battery using electrically connected carbon paper with Na metal as a protected anode is presented in this study. The O2? crossover from the cathode to anode partially contributes to the limited Coulombic efficiency, as well as the Na corrosion during the cycling process. For the cells with protected Na, the carbon paper maintains a pseudo‐equal potential with the Na metal and works as an artificial protective layer to suppress the detrimental side reactions caused by O2? and O2 crossover toward the Na electrode. Furthermore, the short‐circuiting issue caused by Na dendrite growth also can be completely resolved. Consequently, the Na‐O2 cells with protected Na exhibit two times higher discharge capacity and cycling stability compared with the cells using bare Na. These results indicate the crucial role of the Na anode in determining the overall cell performance and a rational design of anode can dramatically contribute to develop advanced Na‐O2 batteries with longer lifespans and better cycling performance.  相似文献   

11.
Moisture in air is a major obstacle for realizing practical lithium‐air batteries. Here, we integrate a hydrophobic ionic liquid (IL)‐based electrolyte and a cathode composed of electrolytic manganese dioxide and ruthenium oxide supported on Super P (carbon black) to construct a promising system for Li‐O2 battery that can be sustained in humid atmosphere (RH: 51%). A high discharge potential of 2.94 V and low charge potential of 3.34 V for 218 cycles are achieved. The outstanding performance is attributed to the synergistic effect of the unique hydrophobic IL‐based electrolyte and the composite cathode. This is the first time that such excellent performance is achieved in humid O2 atmosphere and these results are believed to facilitate the realization of practical lithium‐air batteries.  相似文献   

12.
The stability of electrolytes against highly reactive, reduced oxygen species is crucial for the development of rechargeable Li–O2 batteries. In this work, the effect of lithium salt concentration in 1,2‐dimethoxyethane (DME)‐based electrolytes on the cycling stability of Li–O2 batteries is investigated systematically. Cells with highly concentrated electrolyte demonstrate greatly enhanced cycling stability under both full discharge/charge (2.0–4.5 V vs Li/Li+) and the capacity‐limited (at 1000 mAh g?1) conditions. These cells also exhibit much less reaction residue on the charged air‐electrode surface and much less corrosion of the Li‐metal anode. Density functional theory calculations are used to calculate molecular orbital energies of the electrolyte components and Gibbs activation energy barriers for the superoxide radical anion in the DME solvent and Li+–(DME) n solvates. In a highly concentrated electrolyte, all DME molecules are coordinated with salt cations, and the C–H bond scission of the DME molecule becomes more difficult. Therefore, the decomposition of the highly concentrated electrolyte can be mitigated, and both air cathodes and Li‐metal anodes exhibit much better reversibility, resulting in improved cyclability of Li–O2 batteries.  相似文献   

13.
Aprotic Li–O2 batteries are promising candidates for next‐generation energy storage technologies owing to their high theoretical energy densities. However, their practically achievable specific energy is largely limited by the need for porous conducting matrices as cathode support and the passivation of cathode surface by the insulating Li2O2 product. Herein, a self‐standing and hierarchically porous carbon framework is reported with Co nanoparticles embedded within developed by 3D‐printing of cobalt‐based metal–organic framework (Co‐MOF) using an extrusion‐based printer, followed by appropriate annealing. The novel self‐standing framework possesses good conductivity and necessary mechanical stability, so that it can act as a porous conducting matrix. Moreover, the porous framework consists of abundant micrometer‐sized pores formed between Co‐MOF‐derived carbon flakes and meso‐ and micropores formed within the flakes, which together significantly benefit the efficient deposition of Li2O2 particles and facilitate their decomposition due to the confinement of insulating Li2O2 within the pores and the presence of Co electrocatalysts. Therefore, the self‐standing porous architecture significantly enhances the cell's practical specific energy, achieving a high value of 798 Wh kg?1cell. This study provides an effective approach to increase the practical specific energy for Li–O2 batteries by constructing 3D‐printed framework cathodes.  相似文献   

14.
The practical application of lithium (Li) metal battery is impeded by the Li dendrite growth and unstable solid electrolyte interphase (SEI) layer. Herein, an ultra-stretchable and ionic conducting chemically crosslinked pressure-sensitive adhesive (cPSA) synthesized via the copolymerization of 2-ethylhexyl acrylate and acrylic acid with poly(ethyleneglycol)dimethacrylate as crosslinker (short for 70cPSA), is developed as both artificial SEI layer and solid polymer electrolyte (SPE) for stable Li-metal electrode, enabling all-solid-state Li metal batteries with excellent cycling performance. As an artificial SEI layer, the 70cPSA-modified electrodes exhibit excellent electrochemical performance in Li|70cPSA@Cu half cells and 70cPSA@Li|70cPSA@Li symmetric cells. In full cells with LiFePO4 (LFP) as cathode, the 70cPSA@Li|LFP cell exhibits stable cycling performance over 250 cycles. Utilized as SPE, the all-solid-state Li|SPE|LFP cell delivers excellent cycling stability with a capacity retention of 86% over 500 cycles. With high-voltage LiNi0.8Mn0.1Co0.1O2 (NMC811) as cathode, the Li|SPE|NMC811 cell exhibits a discharge capacity of 124.3 mAh g−1 with a capacity retention of 71% after 200 cycles. The rational design of PSAs and investigation of their dual role for stable and safe Li-metal batteries may shed a light on adhesive polymers for battery applications.  相似文献   

15.
Recently, lithium‐ion batteries have been attracting more interest for use in automotive applications. Lithium resources are confirmed to be unevenly distributed in South America, and the cost of the lithium raw materials has roughly doubled from the first practical application in 1991 to the present and is increasing due to global demand for lithium‐ion accumulators. Since the electrochemical equivalent and standard potential of sodium are the most advantageous after lithium, sodium based energy storage is of great interest to realize lithium‐free high energy and high voltage batteries. However, to the best of our knowledge, there have been no successful reports on electrochemical sodium insertion materials for battery applications; the major challenge is the negative electrode and its passivation. In this study, we achieve high capacity and excellent reversibility sodium‐insertion performance of hard‐carbon and layered NaNi0.5Mn0.5O2 electrodes in propylene carbonate electrolyte solutions. The structural change and passivation for hard‐carbon are investigated to study the reversible sodium insertion. The 3‐volt secondary Na‐ion battery possessing environmental and cost friendliness, Na+‐shuttlecock hard‐carbon/NaNi0.5Mn0.5O2 cell, demonstrates steady cycling performance as next generation secondary batteries and an alternative to Li‐ion batteries.  相似文献   

16.
A molten lithium infusion strategy has been proposed to prepare stable Li‐metal anodes to overcome the serious issues associated with dendrite formation and infinite volume change during cycling of lithium‐metal batteries. Stable host materials with superior wettability of molten Li are the prerequisite. Here, it is demonstrated that a series of strong oxidizing metal oxides, including MnO2, Co3O4, and SnO2, show superior lithiophilicity due to their high chemical reactivity with Li. Composite lithium‐metal anodes fabricated via melt infusion of lithium into graphene foams decorated by these metal oxide nanoflake arrays successfully control the formation and growth of Li dendrites and alleviate volume change during cycling. A resulting Li‐Mn/graphene composite anode demonstrates a super‐long and stable lifetime for repeated Li plating/stripping of 800 cycles at 1 mA cm?2 without voltage fluctuation, which is eight times longer than the normal lifespan of a bare Li foil under the same conditions. Furthermore, excellent rate capability and cyclability are realized in full‐cell batteries with Li‐Mn/graphene composite anodes and LiCoO2 cathodes. These results show a major advancement in developing a stable Li anode for lithium‐metal batteries.  相似文献   

17.
Fast Li‐metal depletion and severe anode pulverization are the most critical obstacles for the energy‐dense Li‐metal full batteries using thin Li‐metal anodes (<50 µm). Here, a wavy‐nanostructured solid electrolyte interphase (SEI) with fast ion transfer kinetics is reported, which can promote high‐efficiency Li‐metal plating/stripping (>98% at 4 mAh cm?2) in conventional carbonate electrolyte. Cryogenic transmission electron microscopy (cryo‐TEM) further reveals the fundamental relationship between wavy‐nanostructured SEI, function, and the electrochemical performance. The wavy SEI with greatly decreased surface diffusion resistance can realize grain coarsening of Li‐metal deposition and exhaustive dissolution of active Li‐metal during the stripping process, which can effectively alleviate “dead Li” accumulation and anode pulverization problems in practical full cells. Under highly challenging conditions (45 µm Li‐metal anodes, 4.3 mAh cm?2 high capacity LiNi0.8Mn0.1Co0.1O2 cathodes), full cells exhibit significantly improved cycling lifespan (170 cycles; 20 cycles for control cells) via the application of wavy SEI.  相似文献   

18.
Li–air batteries, characteristic of superhigh theoretical specific energy density, cost‐efficiency, and environment‐friendly merits, have aroused ever‐increasing attention. Nevertheless, relatively low Coulomb efficiency, severe potential hysteresis, and poor rate capability, which mainly result from sluggish oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) kinetics, as well as pitiful cycle stability caused by parasitic reactions, extremely limit their practical applications. Manganese (Mn)‐based oxides and their composites can exhibit high ORR and OER activities, reduce charge/discharge overpotential, and improve the cycling stability when used as cathodic catalyst materials. Herein, energy storage mechanisms for Li–air batteries are summarized, followed by a systematic overview of the progress of manganese‐based oxides (MnO2 with different crystal structures, MnO, MnOOH, Mn2O3, Mn3O4, MnOx, perovskite‐type and spinel‐type manganese oxides, etc.) cathodic materials for Li–air batteries in the recent years. The focus lies on the effects of crystal structure, design strategy, chemical composition, and microscopic physical parameters on ORR and OER activities of various Mn‐based oxides, and even the overall performance of Li–air batteries. Finally, a prospect of the research for Mn‐based oxides cathodic catalysts in the future is made, and some new insights for more reasonable design of Mn‐based oxides electrocatalysts with higher catalytic efficiency are provided.  相似文献   

19.
Self‐standing electrodes are the key to realize flexible Li‐ion batteries. However, fabrication of self‐standing cathodes is still a major challenge. In this work, porous LiCoO2 nanosheet arrays are grown on Au‐coated stainless steel (Au/SS) substrates via a facile “hydrothermal lithiation” method using Co3O4 nanosheet arrays as the template followed by quick annealing in air. The binder‐free and self‐standing LiCoO2 nanosheet arrays represent the 3D cathode and exhibit superior rate capability and cycling stability. In specific, the LiCoO2 nanosheet array electrode can deliver a high reversible capacity of 104.6 mA h g?1 at 10 C rate and achieve a capacity retention of 81.8% at 0.1 C rate after 1000 cycles. By coupling with Li4Ti5O12 nanosheet arrays as anode, an all‐nanosheet array based LiCoO2//Li4Ti5O12 flexible Li‐ion battery is constructed. Benefiting from the 3D nanoarchitectures for both cathode and anode, the flexible LiCoO2//Li4Ti5O12 battery can deliver large specific reversible capacities of 130.7 mA h g?1 at 0.1 C rate and 85.3 mA h g?1 at 10 C rate (based on the weight of cathode material). The full cell device also exhibits good cycling stability with 80.5% capacity retention after 1000 cycles at 0.1 C rate, making it promising for the application in flexible Li‐ion batteries.  相似文献   

20.
Lithium‐oxygen (Li‐O2) batteries are one of the most promising candidates for high‐energy‐density storage systems. However, the low utilization of porous carbon and the inefficient transport of reactants in the cathode limit terribly the practical capacity and, in particular, the rate capability of state‐of‐the‐art Li‐O2 batteries. Here, free‐standing, hierarchically porous carbon (FHPC) derived from graphene oxide (GO) gel in nickel foam without any additional binder is synthesized by a facile and effective in situ sol‐gel method, wherein the GO not only acts as a special carbon source, but also provides the framework of a 3D gel; more importantly, the proper acidity via its intrinsic COOH groups guarantees the formation of the whole structure. Interestingly, when employed as a cathode for Li‐O2 batteries, the capacity reaches 11 060 mA h g?1 at a current density of 0.2 mA cm?2 (280 mA g?1); and, unexpectedly, a high capacity of 2020 mA h g?1 can be obtained even the current density increases ten times, up to 2 mA cm?2 (2.8 A g?1), which is the best rate performance for Li‐O2 batteries reported to date. This excellent performance is attributed to the synergistic effect of the loose packing of the carbon, the hierarchical porous structure, and the high electronic conductivity of the Ni foam.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号