首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We introduce a nanoporous membrane suitable for virus filtration with good dimensional stability under high pressures maintaining high selectivity. The membrane consists of a double layer: The upper layer is a nanoporous film with pore size of ~17 nm and a thickness of ~160 nm, which was prepared by polystyrene‐block‐poly(methyl methacrylate) copolymer (PS‐b‐PMMA) where PMMA block was removed by ultraviolet irradiation followed by rinsing with acetic acid. The nanoporous block copolymer film was combined with a conventional micro‐filtration membrane to enhance mechanical strength. The membrane employed in this study did not show any damage or crack even at a pressure of 2 bar, while high selectivity was maintained for the filtration of human rhinovirus type 14 which has a diameter of ~30 nm and is a major pathogen of the common cold in humans. Furthermore, due to crosslinked PS matrix during the UV irradiation, the nanoporous membrane showed excellent resistance to all organic solvents. This could be used under harsh filtration conditions such as high temperature and strong acidic (or basic) solution.  相似文献   

2.
Vertical orientation of lamellar and cylindrical nanodomains of block copolymers on substrates is one of the most promising means for developing nanopatterns of next‐generation microelectronics and storage media. However, parallel orientation of lamellar and cylindrical nanodomains is generally preferred due to different affinity between two block segments in a block copolymer toward the substrate and/or air. Thus, vertical orientation of the nanodomains is only obtained under various pre‐ or post‐treatments such as surface neutralization by random copolymers, solvent annealing, and electric or magnetic field. Here, a novel self‐neutralization concept is introduced by designing molecular architecture of a block copolymer. Star‐shaped 18 arm poly(methyl methacrylate)‐block‐polystyrene copolymers ((PMMA‐b‐PS)18) exhibiting lamellar and PMMA cylindrical nanodomains are synthesized. When a thin film of (PMMA‐b‐PS)18 is spin‐coated on a substrate, vertically aligned lamellar and cylindrical nanodomains are obtained without any pre‐ or post‐treatment, although thermal annealing for a short time (less than 30 min) is required to improve the spatial array of vertically aligned nanodomains. This result is attributed to the star‐shaped molecular architecture that overcomes the difference in the surface affinity between PS and PMMA chains. Moreover, vertical orientations are observed on versatile substrates, for instance, semiconductor (Si, SiOx), metal (Au), PS or PMMA‐brushed substrate, and a flexible polymer sheet of polyethylene naphthalate.  相似文献   

3.
We investigate the effect of surface topology of a block copolymer/neutral surface/SiO2 trilayered gate insulator on the properties of pentacene organic thin film transistor (OTFT) by the controlled etching of self assembled poly(styrene‐b‐methyl methacrylate) (PS‐b‐PMMA) block copolymer. The rms roughness of the uppermost block copolymer film directly in contact with pentacenes was systematically controlled from 0.27 nm to approximately 12.5 nm by the selective etching of cylindrical PMMA microdomains hexagonally packed and aligned perpendicular to SiO2 layer with 20 and 38 nm of diameter and periodicity, respectively. Both mobility and On/Off ratio were significantly reduced by more than 3 orders of magnitudes with the film roughness in OTFTs having 60 nm thick pentacene active layer. The poor device performance observed with the etched thin film of block copolymer dielectric is attributed to a defective pentacene active layer and the mixed crystalline structure consisting of thin film and bulk phase arising from the massive nucleation of pentacene preferentially at the edge of each cylindrical etched hole.  相似文献   

4.
Field-effect transistors-based biosensors (bio-FETs) have been considered an important technology for label-free and ultrasensitive point-of-care diagnostics. However, practical applications using bio-FETs are limited due to the trade-off between sensing reliability and sensitivity. This study suggests a reliable and sensitive bio-FETs based on nanoporous molybdenum disulfide (MoS2) channels encapsulated by a non-planar high-k aluminum oxide (Al2O3) dielectric layer. Nanoporous MoS2 thin film is fabricated with an abundant edge area and periodically ordered nanopores via block copolymer lithography. The ultra-thin Al2O3 dielectric layer deposited along the nanoporous structure of the MoS2 realizes effective electrostatic control of charged biomolecules over the MoS2 channel. In addition, it plays important roles in not only enhancing the electrical performance of the nanoporous MoS2 bio-FETs, that is, mobility, hysteresis, and subthreshold swing, but also achieving effective biomolecular immobilization on the device surface. The nanoporous MoS2 channel structure surrounded by non-planar Al2O3 detects a prostate cancer biomarker with an ultra-low limit of detection of 1 fg mL−1. Moreover, the excellent selectivity, high sensitivity, and clinical reliability of the nanoporous MoS2 bio-FETs are also confirmed. The proposed device platform provides new insights and technical advances in the field of FETs based sensors for future point-of-care devices.  相似文献   

5.
Micro‐solid oxide fuel cells (μ‐SOFCs) are fabricated on nanoporous anodic aluminum oxide (AAO) templates with a cell structure composed of a 600‐nm‐thick AAO free‐standing membrane embedded on a Si substrate, sputter‐deposited Pt electrodes (cathode and anode) and an yttria‐stabilized zirconia (YSZ) electrolyte deposited by pulsed laser deposition (PLD). Initially, the open circuit voltages (OCVs) of the AAO‐supported μ‐SOFCs are in the range of 0.05 V to 0.78 V, which is much lower than the ideal value, depending on the average pore size of the AAO template and the thickness of the YSZ electrolyte. Transmission electron microscopy (TEM) analysis reveals the formation of pinholes in the electrolyte layer that originate from the porous nature of the underlying AAO membrane. In order to clog these pinholes, a 20‐nm thick Al2O3 layer is deposited by atomic layer deposition (ALD) on top of the 300‐nm thick YSZ layer and another 600‐nm thick YSZ layer is deposited after removing the top intermittent Al2O3 layer. Fuel cell devices fabricated in this way manifest OCVs of 1.02 V, and a maximum power density of 350 mW cm?2 at 500 °C.  相似文献   

6.
Here, a novel and simple route to fabricate highly dense arrays of palladium nanodots and nanowires with sub‐30 nm periodicity using nanoporous templates fabricated from supramolecular assemblies of a block copolymer, polystyrene‐block‐poly(4‐vinylpyridine) (PS‐b‐P4VP) and a low molecular weight additive, 2‐(4′‐hydroxybenzeneazo) benzoic acid (HABA) is demonstrated. The palladium nanoparticles, which are directly deposited in the nanoporous templates from an aqueous solution, selectively migrate in the pores mainly due to their preferential attraction to the P4VP block covering the pore wall. The polymer template is then removed by oxygen plasma etching or pyrolysis in air resulting in palladium nanostructures whose large scale morphology mirrors that of the original template. The method adopted in this work is general and versatile so that it could easily be extended for patterning a variety of metallic materials into dot and wire arrays.  相似文献   

7.
A chemically coupled polymer layer is introduced onto inorganic oxide dielectrics from a dilute chlorosilane‐terminated polystyrene (PS) solution. As a result of this surface modification, hydrophilic‐oxide dielectrics gain hydrophobic, physicochemically stable properties. On such PS‐coupled SiO2 or AlOx dielectrics, various vacuum‐ and solution‐processable organic semiconductors can develop highly ordered crystalline structures that provide higher field‐effect mobilities (μFETs) than other surface‐modified systems, and negligible hysteresis in organic field‐effect transistors (OFETs). In particular, the use of PS‐coupled AlOx nanodielectrics enables a solution‐processable triethylsilylethynyl anthradithiophene OFET to operate with μFET ~ 1.26 cm2 V?1 s?1 at a gate voltage below –1 V. In addition, a complementary metal‐oxide semiconductor‐like organic inverter with a high voltage gain of approximately 32 was successfully fabricated on a PS‐coupled SiO2 dielectric.  相似文献   

8.
Block copolymers of poly(pentafluorostyrene) (PFS) and poly(methyl methacrylate) (PMMA) (PFS‐b‐PMMA) have been synthesized using atom transfer radical polymerization (ATRP). Then, nanoporous fluoropolymer films have been prepared via selective UV decomposition of the PMMA blocks in the PFS‐b‐PMMA copolymer films. The chemical composition and structure of the PFS homopolymers and copolymers have been characterized using nuclear magnetic resonance (NMR) spectroscopy, thermogravimetric analysis (TGA), X‐ray photoelectron spectroscopy (XPS), time‐of‐flight secondary‐ion mass spectrometry (ToF‐SIMS), and molecular‐weight measurements. The cross‐sectional and surface morphologies of the PFS‐b‐PMMA copolymer films before and after selective UV decomposition of the PMMA blocks have been studied using field‐emission scanning electron microscopy (FESEM). The nanoporous fluoropolymer films with pore sizes in the range 30–50 nm and porosity in the range 15–40 % have been obtained from the PFS‐b‐PMMA copolymers of different PMMA content. Dielectric constants approaching 1.8 have been achieved in the nanoporous fluoropolymer films which contain almost completely decomposed PMMA blocks.  相似文献   

9.
Atomic layer deposition is used to synthesize Al2O3:ZnO(1:x) nanolaminates with the number of deposition cycles, x, ranging from 5 to 30 for evaluation as optically transparent, electron‐selective electrodes in polymer‐based inverted solar cells. Al2O3:ZnO(1:20) nanolaminates are found to exhibit the highest values of electrical conductivity (1.2 × 103 S cm?1; more than six times higher than for neat ZnO films), while retaining a high optical transmittance (≥80% in the visible region) and a low work function (4.0 eV). Such attractive performance is attributed to the structure (ZnO crystal size and crystal alignment) and doping level of this intermediate Al2O3:ZnO film composition. Polymer‐based inverted solar cells using poly(3‐hexylthiophene) (P3HT):phenyl‐C61‐butyric acid methyl ester (PCBM) mixtures in the active layer and Al2O3:ZnO(1:20) nanolaminates as transparent electron‐selective electrodes exhibit a power conversion efficiency of 3% under simulated AM 1.5 G, 100 mW cm?2 illumination.  相似文献   

10.
Y3Al5O12 (YAG) is a widely used phosphor host. Its optical properties are controlled by chemical substitution at its YO8 or AlO6/AlO4 sublattices, with emission wavelengths defined by rare-earth and transition-metal dopants that have been explored extensively. Nonstoichiometric compositions Y3+xAl5-xO12 (x ≠ 0) may offer a route to new emission wavelengths by distributing dopants over two or more sublattices simultaneously, producing new local coordination environments for the activator ions. However, YAG typically behaves as a line phase, and such compositions are therefore challenging to synthesize. Here, a series of highly nonstoichiometric Y3+xAl5-xO12 with 0 ≤ x ≤ 0.40 is reported, corresponding to ≤20% of the AlO6 sublattice substituted by Y3+, synthesized by advanced melt-quenching techniques. This impacts the up-conversion luminescence of Yb3+/Er3+-doped systems, whose yellow-green emission differs from the red-orange emission of their stoichiometric counterparts. In contrast, the YAG:Ce3+ system has a different structural response to nonstoichiometry and its down-conversion emission is only weakly affected. Analogous highly nonstoichiometric systems should be obtainable for a range of garnet materials, demonstrated here by the synthesis of Gd3.2Al4.8O12 and Gd3.2Ga4.8O12. This opens pathways to property tuning by control of host stoichiometry, and the prospect of improved performance or new applications for garnet-type materials.  相似文献   

11.
A novel step‐wise approach for fabrication of periodic arrays of two different types of nanoparticles (NPs), selectively localized at different block copolymer phases is demonstrated. In the first step, pre‐synthesized ≈12 nm silver nanoparticles (AgNPs), stabilized with thiol‐terminated polystyrene, are mixed with poly(styrene‐block‐vinylpyridine) (PS‐b‐PVP) block copolymer in a common solvent. After film casting and consequent solvent vapor annealing the AgNPs are selectively localized within the PS phase of the block copolymer matrix due to the interaction with PS shell of the nanoparticles. In the second step, ≈2–5 nm gold, platinum, or palladium nanoparticles are directly deposited from their aqueous dispersion on the PVP domains of the self‐assembled block copolymer thin films. In such a way, thin films of nanostructured block copolymer with two types of nanoparticles, separated by the two distinct block copolymer phases, are prepared in a step‐wise manner. The presented method is very simple and can be applied for various combinations of pre‐synthesized nanoparticles where the characteristics of either type of nanoparticles are tuned accordingly in advance, which is more difficult to achieve for in situ synthesized nanoparticles.  相似文献   

12.
Atomic‐layer‐deposited aluminium oxide (Al2O3) is applied as rear‐surface‐passivating dielectric layer to passivated emitter and rear cell (PERC)‐type crystalline silicon (c‐Si) solar cells. The excellent passivation of low‐resistivity p‐type silicon by the negative‐charge‐dielectric Al2O3 is confirmed on the device level by an independently confirmed energy conversion efficiency of 20·6%. The best results are obtained for a stack consisting of a 30 nm Al2O3 film covered by a 200 nm plasma‐enhanced‐chemical‐vapour‐deposited silicon oxide (SiOx) layer, resulting in a rear surface recombination velocity (SRV) of 70 cm/s. Comparable results are obtained for a 130 nm single‐layer of Al2O3, resulting in a rear SRV of 90 cm/s. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
《Microelectronic Engineering》2007,84(5-8):716-720
Amorphous (Al2O3)x–(TiO2)1−x composite films are prepared using r.f. unbalanced magnetron sputtering in an atmosphere of argon and oxygen at room temperature. The optical constants of (Al2O3)x–(TiO2)1−x composite films are linearly dependent on the Al2O3 mole fraction in the Al2O3–TiO2 composite film. The optical constants of these Al2O3–TiO2 composite films can be made to meet the optical requirements for a high transmittance attenuated phase shift mask (HT-APSM) blank by tuning the Al2O3 mole fraction. The Al2O3 mole fraction range that would allow the films to meet the optical requirements of an HT-APSM blank for ArF immersion lithography is calculated to be between 76% and 84%. One π-phase-shifted Al2O3–TiO2 composite thin film to be used as an HT-APSM blank for ArF immersion lithography is fabricated and is shown to satisfy the optical requirements.  相似文献   

14.
We explore the potential of laser processing aluminium oxide (Al2O3)/amorphous silicon carbide (a‐SiCx:H) stacks to be used at the rear surface of p‐type crystalline silicon (c‐Si) solar cells. For this stack, excellent quality surface passivation is measured with effective surface recombination velocities as low as 2 cm/s. By means of an infrared laser, the dielectric film is locally opened. Simultaneously, part of the aluminium in the Al2O3 film is introduced into the c‐Si, creating p+ regions that allow ohmic contacts with low‐surface recombination velocities. At optimum pitch, high‐efficiency solar cells are achievable for substrates of 0.5–2.5 Ω cm. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Atomic layer deposition (ALD) of thin Al2O3 (≤10 nm) films is used to improve the rear surface passivation of large‐area screen‐printed p‐type Si passivated emitter and rear cells (PERC). A blister‐free stack of Al2O3/SiOx/SiNx is developed, leading to an improved back reflection and a rear recombination current (J0,rear) of 92 ± 6 fA/cm2. The Al2O3/SiOx/SiNx stack is blister‐free if a 700°C anneal in N2 is performed after the Al2O3 deposition and prior to the SiOx/SiNx capping. A clear relationship between blistering density and lower open‐circuit voltage (VOC) due to increased rear contacting area is shown. In case of the blister‐free Al2O3/SiOx/SiNx rear surface passivation stack, an average cell efficiency of 19.0% is reached and independently confirmed by FhG‐ISE CalLab. Compared with SiOx/SiNx‐passivated PERC, there is an obvious gain in VOC and short‐circuit current (JSC) of 5 mV and 0.2 mA/cm2, respectively, thanks to improved rear surface passivation and rear internal reflection. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Limiting parameters (operating temperature and cutoff frequency) and current-voltage characteristics of one-electron transistors based on various metal compounds (Al/AlOx/Al, Al/SiO2/Al, Au/Al2O3/Au, Nb/Al2O3/Nb, Ti/TiOx/Ti, Cr/Cr2O3/Cr, and Nb/NbOx/Nb) were theoretically studied. Practical recommendations for the choice of materials and structure sizes were formulated. The characteristics were calculated using a SET-NANODEV software package based on the effect of one-electron tunneling and developed for structure simulation according to a technique for estimating the limiting parameters and a two-dimensional numerical model of the metal one-electron transistor.  相似文献   

17.
Mesoporous silica nanoparticles (MSNs) are of growing interest for the development of novel probes enabling efficient tracking of cells in vivo using magnetic resonance imaging (MRI). The incorporation of Gd3+ paramagnetic ions into highly porous MSNs is a powerful strategy to synthesize “positive” MRI contrast agents for more quantitative T1‐weighted MR imaging. Within this context, different strategies have been reported to integrate Gd chelates to 2D pore network MSNs. As an alternative, we report on the modulation of the pore network topology through the preparation of a 3D pore network hybrid GdSixOy MSN system. In this study, 2D GdSixOy‐MSNs with similar porosity and particle size were also prepared and the relaxometric performances of both materials, directly compared. Both syntheses lead to water‐dispersible MSNs suspensions (particle size < 200 nm), which were stable for at least 48h. 3D GdSixOy‐MSNs provided a significant increase in 1H longitudinal relaxivity (18.5 s?1mM?1; 4.6 times higher than Gd‐DTPA) and low r2/r1 ratios (1.56) compatible with the requirements of “positive” contrast agents for MRI. These results demonstrate the superiority of a 3D pore network to host paramagnetic atoms for MRI signal enhancement using T1‐weighted imaging. Such an approach minimizes the total amount of paramagnetic element per particle.  相似文献   

18.
Superstrate CdS/CdTe thin‐film solar cells with Cu‐free transition metal oxide (TMO)/Au and Au‐only back contacts have been fabricated. The TMOs include MoO3‐x, V2O5‐x, and WO3‐x. The incorporation of the TMO buffer layers at the back contacts resulted in significant improvement on open‐circuit voltage (VOC) as compared with the cells with Cu‐free Au‐only back contacts. Among the cells using TMO buffer layers, the ones with MoO3‐x buffer layers exhibited the best performance, yielding an efficiency of 14.1% under AM1.5 illumination with VOC of 815 mV and a fill factor of 67.9%. Though the performance is slightly behind the best reference cell with a Cu/Au back contact fabricated in our lab with VOC of 844 mV, fill factor of 76.3%, and efficiency of 15.7%, the use of Cu‐free back contacts may lead to improved long‐term cell stability. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Films of Hf0.5Z0.5O2 (HZO) contain a network of grain boundaries. In (111) HZO epitaxial films on (001) SrTiO3, for instance, twinned orthorhombic (o‐HZO) ferroelectric crystallites coexist with grain boundaries between o‐HZO and a residual paraelectric monoclinic (m‐HZO) phase. These grain boundaries contribute to the resistive switching response in addition to the genuine ferroelectric polarization switching and have detrimental effects on device performance. Here, it is shown that, by using suitable nanometric capping layer deposited on HZO film, a radical improvement of the operation window of the tunnel device can be achieved. Crystalline SrTiO3 and amorphous AlOx are explored as capping layers. It is observed that these layers conformally coat the HZO surface and allow to increase the yield and homogeneity of ferroelectric junctions while strengthening endurance. Data show that the capping layers block ionic‐like transport channels across grain boundaries. It is suggested that they act as oxygen suppliers to the oxygen‐getters grain boundaries in HZO. In this scenario it could be envisaged that these and other oxides could also be explored and tested for fully compatible CMOS technologies.  相似文献   

20.
In this paper we describe the combined use of surface‐initiated atom transfer radical polymerization (ATRP) and a gas/solid reaction in the direct preparation of CdS‐nanoparticle/block‐copolymer composite shells on silica nanospheres. The block copolymer, consisting of poly(cadmium dimethacrylate) (PCDMA) and poly(methyl methacrylate) (PMMA), is obtained by repeatedly performing the surface‐initiated ATRP procedures in N,N‐dimethylformamide (DMF) solution at room temperature, using cadmium dimethacrylate (CDMA) and methyl methacrylate (MMA) as the monomers. CdS nanoparticles with an average size of about 3 nm are generated in situ by exposing the silica nanospheres coated with block‐copolymer shells to H2S gas. These synthetic core–shell nanospheres were characterized using transmission electron microscopy (TEM), dynamic light scattering (DLS), thermogravimetric analysis (TGA), diffuse reflectance UV‐vis spectroscopy, X‐ray photoelectron spectroscopy (XPS), and powder X‐ray diffraction (XRD). These composite nanospheres exhibit strong red photoluminescence in the solid state at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号