首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
2D Ruddlesden–Popper perovskites are interesting for a variety of applications owing to their tunable optical properties and their excellent ambient stability. As these materials are processable from solution, they hold the promise of procuring flexible and cost‐effective films through large‐scale fabrication techniques. However, such solution‐based deposition techniques often induce large degrees of heterogeneity due to poorly controlled crystallization. The microscopic properties of films of (PEA)2PbI4 cast from precursor solutions of different stoichiometry are therefore investigated. The stoichiometry of the precursor solution is found to have a large impact on the crystallinity, morphology, and optical properties of the resulting thin films. Even for films cast from stoichiometric precursors, differences in photoluminescence intensities occur on a subgranular level. The heterogeneity in these films is found to be thermally activated with an activation energy of 0.4 eV for the emergence of local variations in nonradiative recombination rates. The spatial variation in the distribution of trap states is attributed to local fluctuations in the stoichiometry. In line with this, the surface can successfully be passivated by providing an excess of phenylethylammonium iodide (PEAI) to an as‐cast film, enhancing the photoluminescence by as much as 85% without significantly altering the film's morphology.  相似文献   

2.
    
Quasi‐2D metal halide perovskite films are promising for efficient light‐emitting diodes (LEDs), because of their efficient radiative recombination and suppressed trap‐assisted quenching compared with pure 3D perovskites. However, because of the multidomain polycrystalline nature of solution‐processed quasi‐2D perovskite films, the composition engineering always impacts the emitting properties with complicated mechanisms. Here, defect passivation and domain distribution of quasi‐2D perovskite films prepared with various precursor compositions are systematically studied. As a result, in perovskite films prepared from stoichiometric quasi‐2D precursor compositions, large organic ammonium cations function well as passivators. In comparison, precursor compositions of simply adding large organic halide salt into a 3D perovskite precursor ensure not only the defect passivation but also the effective formation of quasi‐2D perovskite domains, avoiding unfavorable appearance of low‐order domains. Quasi‐2D perovskite films fabricated with a well‐designed precursor composition achieve a high photoluminescence quantum yield of 95.3% and an external quantum efficiency of 14.7% in LEDs.  相似文献   

3.
    
Two‐dimensional (2D) organic–inorganic hybrid perovskites (OIHPs), a natural multiple‐quantum‐well structure with quasi‐2D electronic properties, have recently emerged as a promising class of semiconducting materials for photovoltaic and optoelectronic applications. However, facile synthesis of high‐quality 2D OIHPs single crystals is still lacking. The layer dependence of the exciton binding energy of (C4H9NH3)2PbI4 (C4PI), a widely studied 2D OIHP, is still debated. Herein, a novel synthesis technique based on inverse temperature crystallization in a binary‐solvent system is used to prepare 2D OIHPs and a systematic study of excitonic states of the synthesized 2D OIHPs by two‐photon excitation (TPE) spectroscopy is conducted. The obtained TPE spectra indicate that the exciton binding energies are similar for C4PI nanosheets and bulk crystals with different number of layers, most likely due to the intrinsically weak interlayer coupling. Further, the dark excitonic 2p states of (C6H5(CH2)2NH3)2PbI4 (PEPI) and C4PI are also observed by TPE spectroscopy. The results provide a novel synthesis protocol and insight into exciton properties of 2D OIHPs.  相似文献   

4.
5.
    
Luminescent ferroelectrics have attracted considerable attention in terms of integrated photoelectronic devices, most of which are focused on the multicomponent systems of rare‐earth doping ferroelectric ceramics. However, bulk ferroelectricity with coexistence of strong white‐light emission, especially in the single‐component system, remains quite rare. Here, a new organic–inorganic hybrid ferroelectric of (C4H9NH3)2PbCl4 ( 1 ) is reported, adopting a 2D layered perovskite architecture, which exhibits an unprecedented coexistence of notable ferroelectricity and intrinsic white‐light emission. Decent above‐room‐temperature spontaneous polarization of ≈2.1 µC cm?2 is confirmed for 1 . Particularly, it also exhibits brilliant broadband white‐light emission with a high color‐rendering‐index up to 86 under UV excitation. Structural analyses indicate that ferroelectricity of 1 originates from molecular reorientation of dynamic organic cations, as well as significant structural distortion of PbCl6 octahedra that also contribute to its white‐light emission. This work paves an avenue to design new hybrid ferroelectrics for multifunctional application in the photoelectronic field.  相似文献   

6.
While perovskite light‐emitting diodes typically made with high work function anodes and low work function cathodes have recently gained intense interests. Perovskite light‐emitting devices with two high work function electrodes with interesting features are demonstrated here. Firstly, electroluminescence can be easily obtained from both forward and reverse biases. Secondly, the results of impedance spectroscopy indicate that the ionic conductivity in the iodide perovskite (CH3NH3PbI3) is large with a value of ≈10?8 S cm?1. Thirdly, the shift of the emission spectrum in the mixed halide perovskite (CH3NH3PbI3?xBrx) light‐emitting devices indicates that I? ions are mobile in the perovskites. Fourthly, this work shows that the accumulated ions at the interfaces result in a large capacitance (≈100 μF cm?2). The above results conclusively prove that the organic–inorganic halide perovskites are solid electrolytes with mixed ionic and electronic conductivity and the light‐emitting device is a light‐emitting electrochemical cell. The work also suggests that the organic–inorganic halide perovskites are potential energy‐storage materials, which may be applicable in the field of solid‐state supercapacitors and batteries.  相似文献   

7.
    
Ordered nanostructured crystals of thin organic–inorganic metal halide perovskites (OIHPs) are of great interest to researchers because of the dimensional‐dependence of their photoelectronic properties for developing OIHPs with novel properties. Top‐down routes such as nanoimprinting and electron beam lithography are extensively used for nanopatterning OIHPs, while bottom‐up approaches are seldom used. Herein, developed is a simple and robust route, involving the controlled crystallization of the OIHPs templated with a self‐assembled block copolymer (BCP), for fabricating nanopatterned OIHP films with various shapes and nanodomain sizes. When the precursor solution consisting of methylammonium lead halide (MAPbX3, X = Br?, I?) perovskite and poly(styrene)‐block‐poly(2‐vinylpyridine) (PS‐b‐P2VP) is spin‐coated on the substrate, a nanostructured BCP is developed by microphase separation. Spontaneous crystallization of the precursor ions preferentially coordinated with the P2VP domains yields ordered nanocrystals with various nanostructures (cylinders, lamellae, and cylindrical mesh) with controlled domain size (≈40–72 nm). The nanopatterned OIHPs show significantly enhanced photoluminescence (PL) with high resistance to both humidity and heat due to geometrically confining OIHPs in and passivation with the P2VP chains. The self‐assembled OIHP films with high PL performance provide a facile control of color coordinates by color conversion layers in blue‐emitting devices for cool‐white emission.  相似文献   

8.
9.
    
The efficiency of perovskite solar cells has increased to a certified value of 25.2% in the past 10 years, benefiting from the superior properties of metal halide perovskite materials. Compared with the widely investigated polycrystalline thin films, single crystal perovskites without grain boundaries have better optoelectronic properties, showing great potential for photovoltaics with higher efficiency and stability. Additionally, single crystal perovskite solar cells are a fantastic model system for further investigating the working principles related to the surface and grain boundaries of perovskite materials. Unfortunately, only a handful of groups have participated in the development of single crystal perovskite solar cells; thus, the development of this area lags far behind that of its polycrystalline counterpart. Therefore, a review paper that discusses the recent developments and challenges of single crystal perovskite solar cells is urgently required to provide guidelines for this emerging field. In this progress report, the optical and electrical properties of single crystal and polycrystalline perovskite thin films are compared, followed by the recent developments in the growth of single crystal perovskite thin films and the photovoltaic applications of this material. Finally, the challenges and perspectives of single crystal perovskite solar cells are discussed in detail.  相似文献   

10.
    
Hybrid organic–inorganic metal halide perovskites are particularly promising for light‐emitting diodes (LEDs) due to their attractive optoelectronic properties such as wavelength tunability, narrow emission linewidth, defect tolerance, and high charge carrier mobility. However, the undercoordinated Pb and halide at the perovskite nanocrystal (NC) surface causes traps and nonradiative recombination. In this work, the external quantum efficiency of iodide‐based perovskite LEDs is boosted to greater than 15%, with an emission wavelength at 750 nm, by engineering the perovskite NC surface stoichiometry and chemical structure of bulky organoammonium ligands. To the stoichiometric precursor solution for the 3D bulk perovskite, 20% molar ratio of methylammonium iodide is added in addition to 20% excess bulky organoammonium iodide to ensure that the NC surface is organoammonium terminated as the crystal size is decreased to 5–10 nm. This combination ensures minimal undercoordinated Pb and halide on the surface, avoids 2D phases, and acts to provide nanosized perovskite grains which allow for smooth and pinhole‐free films. As a result of time‐resolved photoluminescence (PL) and PL quantum yield measurements, it is possible to demonstrate that this surface modification increases the radiative recombination rate while reducing the nonradiative rate.  相似文献   

11.
    
Organic–inorganic lead halide perovskite materials have recently attracted much attention in the field of optoelectronic devices. Here, a hybrid piezoelectric nanogenerator based on a composite of piezoelectric formamidinium lead halide perovskite (FAPbBr3) nanoparticles and polydimethylsiloxane polymer is fabricated. Piezoresponse force spectroscopy measurements reveal that the FAPbBr3 nanoparticles contain well‐developed ferroelectric properties with high piezoelectric charge coefficient (d33) of 25 pmV−1. The flexible device exhibits high performance with a maximum recordable piezoelectric output voltage of 8.5 V and current density of 3.8 μA cm−2 under periodically vertical compression and release operations. The alternating energy generated from nanogenerators can be used to charge a capacitor and light up a red light‐emitting diode through a bridge rectifier. This result innovatively expands the feasibility of organic–inorganic lead halide perovskite materials for application in a wide variety of high‐performance energy harvesting devices.  相似文献   

12.
    
The absorption and photoluminescence, both steady‐state and time‐resolved, of CsPbX3 (X = Cl, Br, I) nanocrystals are reported at temperatures ranging from 3 to 300 K. These measurements offer a unique window into the fundamental properties of this class of materials which is considered promising for light‐emitting and detection devices. The bandgaps are shown to increase from low to high temperature, and none of the examined cesium‐based perovskite nanocrystals exhibit a bandgap discontinuity in this temperature range suggesting constant crystal phase. Time‐resolved measurements show that the radiative lifetime of the band‐edge emission depends strongly on the halide ion and increases with heating. The increasing lifetime at higher temperatures is attributed primarily to free carriers produced from exciton fission, corroborated by the prevalence of excitonic character in absorption. The results particularly highlight many of the similarities in physical properties, such as low exciton binding energy and long lifetime, between CsPbI3 and hybrid organic–inorganic plumbotrihalide perovskites.  相似文献   

13.
Hybrid perovskite and all‐inorganic perovskite have attracted much attention in recent years owing to their successful use in the photovoltaic field. Usually the perovskite is used in its bulk form, although recently, perovskites' nanocrystalline form has received increased attention. Recent developments in the evolving research field of nanomaterial‐based perovskite are reviewed. Both hybrid organic‐inorganic and all‐inorganic perovskite nanostructures are discussed, as well as approaches to tune the optical properties by controlling the size and shape of perovskite nanostructures. In addition, chemical modifications can change the perovskite nanostructures' band‐gap, similar to their bulk counterpart. Several applications, including light‐emitting diodes, lasers, and detectors, demonstrate the latent potential of perovskite nanostructures.  相似文献   

14.
    
Increasing demands for information‐storage capacity and for miniaturization of memory cells have driven exploration of new‐generation data storage devices, because the conventional Si‐based memory technology is approaching its fundamental physical limits. Hybrid materials and novel device structure may lead to a paradigm shift toward memory devices that have high density, multifunctionality, and low power consumption. Here, the structure and operation mechanism of resistive switching memory devices are described, then recent advances in hybrid materials (e.g., graphene‐based polymer composites, organic–inorganic hybrid perovskite materials) for fabrication of these devices are summarized. How to increase the ON/OFF ratio and the density of memories, and to decrease programming voltage by selecting appropriate active materials, and engineering the active layers, are also demonstrated. Finally, the current challenges and future directions in memory devices based on hybrid materials are summarized.  相似文献   

15.
The influence of hot phonon effect and intervalley scattering on the hot carrier cooling rate was investigated using femtosecond time‐resolved photoluminescence spectroscopy in bulk GaAs and InP, two electronically similar but vibrationally distinct semiconductors. In both materials, a broad photoluminescence signal that extends from the band gap energy to values larger than the pump pulse energy was observed during the first few picoseconds after photoexcitation, for different excitation energies (1.7, 1.88, and 2.4 eV) at high carrier densities (>1019 cm−3). Different hot carrier relaxation times were observed in GaAs and InP for different excitation energies, demonstrating the influence of intervalley scattering phenomena in GaAs. When electrons were not energetic enough to access satellite valleys, longer decay transients were observed for InP compared with GaAs. This provides experimental evidence of the hot phonon effect in InP. Temperature transients were calculated by analyzing the topography of the two‐dimensional spectra. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Combining high internal surface area with tailor‐made surface properties is pivotal for granting advanced functional properties in many areas like heterogeneous catalysis, electrode materials, membranes, or also biomimetics. In this respect, organic‐inorganic hybrid nanostructures and in particular mesoporous organosilica materials are ideal systems. Here, the preparation of mesoporous solids via a new sol–gel building block comprising sulfonic acid (R‐SO3H) is described. The degree of organic modification is not only maximal (100%), it is also proven that the novel material exhibits superacid properties. Furthermore, an aerosol assisted method is applied for generating this material in the form of mesoporous, spherical nanoparticles with substantial colloidal stability. Highly acidic, high surface area materials, like prepared here, are promising candidates for numerous future applications like in heterogeneous catalysis or for proton conducting membranes. However, first experiments addressing the antibacterial effect of the sulfonic‐acid, mesoporous organosilica materials are shown. It is demonstrated that the superacid character is required for exhibiting sufficient antifouling activity.  相似文献   

17.
Many modern systems are based on photoresponsive materials, in which properties such as the refractive index need to be effectively controlled. An extensively used means of achieving this is to photoinduce birefringence by alignment of anisotropic azochromophores via light‐induced isomerization. However, the refractive index changes are typically small (<10?2), slow (seconds or minutes) and not spontaneously reversible, which excludes use of this approach in a variety of optical systems. The drawbacks are generally attributed to hindered photoalignment due to the molecular environment, which suggests that optimizing the arrangement of the functional moieties to minimize the mobility restrictions could decisively improve the photoresponse. Here, a simple solution‐processing approach is reported for favorable distribution at the molecular level of neat azochromophore into a three‐dimensionally nanostructured hybrid system exhibiting an extremely enhanced photoresponse. The standard azoderivative Disperse Red 1 is adsorbed on silica colloidal crystals that are chosen as 3D‐templates because their photonic bandgap, which is sensitive to refractive index changes, provides a direct tool to study photostimulated processes in the chromophore. The system is thoroughly investigated with different techniques to identify molecular out‐of‐plane photoalignment as the main phenomenon responsible for the optical response, and to discern the key factors leading to improved performance. It is found that the dye molecules are spontaneously adsorbed on the silica spheres, building a highly photoreactive surface multilayer. A low amount of azochromophore allows for outstanding material response upon cw‐irradiation, as a result of very large and fast refractive index changes in the chromophore ensemble (up to 0.36 – birefringence of 1.1 – in 15 ms at 0.09 J cm?2) that, in addition, is fully reversible by thermalization. Finally, as proof‐of‐principle for real applications, long‐duty cycle photoswitching at 100 Hz (for over 2 million cycles) is demonstrated in this system.  相似文献   

18.
Knowledge about the working mechanism of the PbS:P3HT:PCBM [P3HT=poly(3‐hexylthiophene), PCBM=[6,6]‐phenyl‐C61 ‐butyric acid methyl ester] hybrid blend used for efficient near‐infrared photodiodes is obtained from time‐resolved photoluminescence (PL) studies. To understand the role of each component in the heterojunction, the PL dynamics of the ternary (PbS:P3HT:PCBM) blend and the binary (PbS:P3HT, PbS:PCBM and P3HT:PCBM) blends are compared with the PL of the pristine PbS nanocrystals (NCs) and P3HT. In the ternary blend the efficiency of the charge transfer is significantly enhanced compared to the one of PbS:P3HT and PbS:PCBM blends, indicating that both hole and electron transfer from excited NCs to the polymer and fullerene occur. The hole transfer towards the P3HT determines the equilibration of their population in the NCs after the electron transfer towards PCBM, allowing their re‐excitation and new charge transfer process.  相似文献   

19.
    
A hybrid phototransistor is developed with solution‐processed organolead trihalide perovskite (MAPbI3) capping indium gallium zinc oxide (IGZO), which well fuses the properties of the two materials in sensitive photodetecting and high‐mobility charge transporting, respectively. The MAPbI3‐capped IGZO phototransistor demonstrates excellent responsivities of over 25 mA W−1 for lights with photon energies above the bandgap of perovskite light absorber. Besides the high sensitivity to light in both ultraviolet and visible regions, hybrid phototransistor maintains a fair on/off ratio of over 106 in the dark, and a field effect mobility of 12.9 cm2 V−1 s−1. The perovskite light absorber also obviates the long‐standing problem for metal oxide phototransistor, the persistent photoconductivity behavior. Furthermore, fast transient response has been achieved by showing rise‐time and fall‐time within tens of milliseconds. The newly developed device opens variable optic‐electric sensing applications for the integrated oxide–perovskite hybrid phototransistors.  相似文献   

20.
The potential and application of X‐ray absorption spectroscopy (XAS) for structural investigations of organic–inorganic hybrid materials, with a special emphasis on systems consisting of inorganic building blocks (clusters) embedded into polymer backbones, is extensively reviewed. In the first part of the paper, the main features of organic–inorganic hybrid materials, their classification, the synthetic approaches for their preparation, and their applications are concisely presented, whereas the particular issues related to their characterization are discussed in more detail. In the second section of the paper, the principles and the theoretical background of the XAS method, including experimental design, data reduction, evaluation, analysis, and interpretation are described and discussed. Examples of potentialities of the method for the short‐range structural investigation of inorganic nanostructures in hybrids are provided, and the state‐of‐the‐art in the field of hybrid materials is reviewed. In the third part, six different case studies belonging to our past and present experience in this field are presented and discussed, with a particular focus on their XAS investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号