首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Epidermal electronics are extensively explored as an important platform for future biomedical engineering. Epidermal devices are typically fabricated using high‐cost methods employing complex vacuum microfabrication processes, limiting their widespread potential in wearable electronics. Here, a low‐cost, solution‐based approach using electroconductive reduced graphene oxide (RGO) sheets on elastic and porous poly(dimethylsiloxane) (PDMS) thin films for multifunctional, high‐performance, graphene‐based epidermal bioelectrodes and strain sensors is presented. These devices are fabricated employing simple coatings and direct patterning without using any complicated microfabrication processes. The graphene bioelectrodes show a superior stretchability (up to 150% strain), with mechanical durability up to 5000 cycles of stretching and releasing, and low sheet resistance (1.5 kΩ per square), and the graphene strain sensors exhibit a high sensitivity (a gauge factor of 7 to 173) with a wide sensing range (up to 40% strain). Fully functional applications of dry bioelectrodes in monitoring human electrophysiological signals (i.e., electrocardiogram, electroencephalography, and electromyogram) and highly sensitive strain sensors for precise detection of large‐scale human motions are demonstrated. It is believed that our unique processing capability and multifunctional device platform based on RGO/porous PDMS will pave the way for low‐cost processing and integration of 2D materials for future wearable electronic skin.  相似文献   

2.
It is a challenge to manufacture pressure‐sensing materials that possess flexibility, high sensitivity, large‐area compliance, and capability to detect both tiny and large motions for the development of artificial intelligence products. Herein, a very simple and low‐cost approach is proposed to fabricate versatile pressure sensors based on microcrack‐designed carbon black (CB)@polyurethane (PU) sponges via natural polymer‐mediated water‐based layer‐by‐layer assembly. These sensors are capable of satisfying the requirements of ultrasmall as well as large motion monitoring. The versatility of these sensors benefits from two aspects: microcrack junction sensing mechanism for tiny motion detecting (91 Pa pressure, 0.2% strain) inspired by the spider sensory system and compressive contact of CB@PU conductive backbones for large motion monitoring (16.4 kPa pressure, 60% strain). Furthermore, these sensors exhibit excellent flexibility, fast response times (<20 ms), as well as good reproducibility over 50 000 cycles. This study also demonstrates the versatility of these sensors for various applications, ranging from speech recognition, health monitoring, bodily motion detection to artificial electronic skin. The desirable comprehensive performance of our sensors, which is comparable to the recently reported pressure‐sensing devices, together with their significant advantages of low‐cost, easy fabrication, especially versatility, makes them attractive in the future of artificial intelligence.  相似文献   

3.
The advancement of electronic skin envisions novel multifunctional human machine interfaces. Although motion sensing by detecting contact locations is popular and widely used in state‐of‐the‐art flexible electronics, noncontact localization exerts fascinations with unique interacting experiences. This paper presents a self‐powered noncontact electronic skin capable of detecting the motion of a surface electrified object across the plane parallel to that of the electronic skin based on electrostatic induction and triboelectric effects. The displacement of the object is calculated under the system of polar coordinates, with a resolution of 1.5 mm in the lengthwise direction and 0.76° in the angular direction. It can serve as a human machine interface due to its ability to sense noncontact motions. An additional self‐powered feature, enabled by its physical principles, solves the problem of power supply. This electronic skin consists of trilayers of polyethyleneterephthalate–indium tin oxide–polydimethylsiloxane (PDMS) films, and microstructured PDMS as the electrified layer, which can be achieved through simplified, low cost, and scalable fabrication. Transparency, flexibility, and less number of electrodes enable such electronic skin to be easily integrated into portable electronic devices, such as laptops, smart phones, healthcare devices, etc.  相似文献   

4.
Realization of sensing multidirectional strains is essential to understanding the nature of complex motions. Traditional uniaxial strain sensors lack the capability to detect motions working in different directions, limiting their applications in unconventional sensing technology areas, like sophisticated human–machine interface and real‐time monitoring of dynamic body movements. Herein, a stretchable multidirectional strain sensor is developed using highly aligned, anisotropic carbon nanofiber (ACNF) films via a facile, low‐cost, and scalable electrospinning approach. The fabricated strain sensor exhibits semitransparency, good stretchability of over 30%, outstanding durability for over 2500 cycles, and remarkable anisotropic strain sensing performance with maximum gauge factors of 180 and 0.3 for loads applied parallel and perpendicular to fiber alignment, respectively. Cross‐plied ACNF strain sensors are fabricated by orthogonally stacking two single‐layer ACNFs, which present a unique capability to distinguish the directions and magnitudes of strains with a remarkable selectivity of 3.84, highest among all stretchable multidirectional strain sensors reported so far. Their unconventional applications are demonstrated by detecting multi‐degrees‐of‐freedom synovial joint movements of the human body and monitoring wrist movements for systematic improvement of golf performance. The potential applications of novel multidirectional sensors reported here may shed new light into future development of next‐generation soft, flexible electronics.  相似文献   

5.
Electronic skin (e‐skin) has been under the spotlight due to great potential for applications in robotics, human–machine interfaces, and healthcare. Meanwhile, triboelectric nanogenerators (TENGs) have been emerging as an effective approach to realize self‐powered e‐skin sensors. In this work, bioinspired TENGs as self‐powered e‐skin sensors are developed and their applications for robotic tactile sensing are also demonstrated. Through the facile replication of the surface morphology of natural plants, the interlocking microstructures are generated on tribo‐layers to enhance triboelectric effects. Along with the adoption of polytetrafluoroethylene (PTFE) tinny burrs on the microstructured tribo‐surface, the sensitivity for pressure measurement is boosted with a 14‐fold increase. The tactile sensing capability of the TENG e‐skin sensors are demonstrated through the characterizations of handshaking pressure and bending angles of each finger of a bionic hand during handshaking with human. The TENG e‐skin sensors can also be utilized for tactile object recognition to measure surface roughness and discern hardness. The facile fabrication scheme of the self‐powered TENG e‐skin sensors enables their great potential for applications in robotic dexterous manipulation, prosthetics, human–machine interfaces, etc.  相似文献   

6.
A rational approach is proposed to design soft multifunctional sensors capable of detection and discrimination of different physical stimuli. Herein, a flexible multifunctional sensor concurrently detecting and distinguishing minute temperature and pressure stimuli in real time is developed using electrospun carbon nanofiber (CNF) films as the sole sensing material and electrical resistance as the only output signal. The stimuli sensitivity and discriminability are coordinated by tailoring the atomic- and device-level structures of CNF films to deliver outstanding pressure and temperature sensitivities of ? 0.96 kPa?1 and ? 2.44%  ° C?1, respectively, enabling mutually exclusive sensing performance without signal cross-interference. The CNF multifunctional sensor is considered the first of its kind to accomplish the stimulus discriminability using only the electrical resistance as the output signal, which is most convenient to monitor and process for device applications. As such, it has distinct advantages over other reported sensors in its simple, cost-effective fabrication and readout system. It also possesses other invaluable traits, including good bending stability, fast response time, and long-term durability. Importantly, the ability to simultaneously detect and decouple temperature and pressure stimuli is demonstrated through novel applications as a skin-mountable device and a flexible game controller.  相似文献   

7.
Promoted by the demand for wearable devices, graphene has been proved to be a promising material for potential applications in flexible and highly sensitive strain sensors. However, low sensitivity and complex processing of graphene retard the development toward the practical applications. Here, an environment‐friendly and cost‐effective method to fabricate large‐area ultrathin graphene films is proposed for highly sensitive flexible strain sensor. The assembled graphene films are derived rapidly at the liquid/air interface by Marangoni effect and the area can be scaled up. These graphene‐based strain sensors exhibit extremely high sensitivity with gauge factor of 1037 at 2% strain, which represents the highest value for graphene platelets at this small deformation so far. This simple fabrication for strain sensors with highly sensitive performance of strain sensor makes it a novel approach to applications in electronic skin, wearable sensors, and health monitoring platforms.  相似文献   

8.
BaTiO3 crystals are attractive materials due to their high dielectric properties, but they are brittle and inelastic ceramics, which limits their broader applications in emerging fields, such as flexible electronics. A scalable strategy for the fabrication of ultra‐flexible crystalline BaTiO3 nanofiber (NF) films by a sol–gel electrospinning method, followed by a brief calcination, is reported. It facilitates the formation of perovskite BaTiO3 crystals with intricate grain boundaries at a low temperatures by growing them within polymer NF templates. The ceramic films have a polymer‐like softness of 50 mN, a large Young's modulus of 61 MPa, and an elastic strain of 0.9%. Moreover, they have a low density of 28 mg cm?3 and demonstrate superior softness without fracture after deformation. Piezoelectric sensors fabricated based on these films exhibit a high sensitivity of 80 ms with an output voltage of 1.05 V at a pressure of 100 kPa. This approach allows for the large‐scale fabrication of flexible BaTiO3 crystal NF films.  相似文献   

9.
Highly sensitive temperature sensors are designed by exploiting the interparticle distance–dependent transport mechanism in nanocrystal (NC) thin films based on a thermal expansion strategy. The effect of ligands on the electronic, thermal, mechanical, and charge transport properties of silver (Ag) NC thin films on thermal expandable substrates of poly(dimethylsiloxane) (PDMS) is investigated. While inorganic ligand‐treated Ag NC thin films exhibit a low temperature coefficient of resistance (TCR), organic ligand‐treated films exhibit extremely high TCR up to 0.5 K?1, which is the highest TCR exhibited among nanomaterial‐based temperature sensors to the best of the authors' knowledge. Structural and electronic characterizations, as well as finite element method simulation and transport modeling are conducted to determine the origin of this behavior. Finally, an all‐solution based fabrication process is established to build Ag NC‐based sensors and electrodes on PDMS to demonstrate their suitability as low‐cost, high‐performance attachable temperature sensors.  相似文献   

10.
Electronic skins, as the integration of multiple distinct sensors, have aroused broad interests owing to their great potential in sensing applications. However, problems including the interference between sensing components and the difficulty in synchronous monitoring are practically encountered when they are applied to mixed signals. In this work, efforts are devoted to trouble‐free technical strategies for laminating three sensors with different sensing abilities into a skin‐like electronic device. The use of ionic liquid, combined with particular circuit topologies, ensures the reliable stability against mechanical disturbance during the real‐time sensing tests. The intrinsic layered structure and three independent sensing functions of natural skins are successfully presented by this particular device in which three sensors with the ease of preparation are spatially integrated. The changes of temperature, pressure, and infrared light can be recorded simultaneously yet without mutual signal interference. The perfect integration of multiple functional sensors into a single skin‐like device without any signal interference makes an important progress for pursuing the goal of future electronic skins that can practically be used as skin.  相似文献   

11.
Multifunctional flexible sensors that are sensitive to different physical and chemical stimuli but remain unaffected by any mechanical deformation and/or changes still present a challenge in the implementation of flexible devices in real‐world conditions. This challenge is greatly intensified by the need for an eco‐friendly fabrication technique suitable for mass production. A new eco‐friendly and scalable fabrication approach is reported for obtaining thin and transparent multifunctional sensors with regulated electrical conductivity and tunable band‐gap. A thin (≈190 nm thickness) freestanding sensing film with up to 4 inch diameter is demonstrated. Integration of the freestanding films with different substrates, such as polyethylene terephthalate substrates, silk textile, commercial polyethylene thin film, and human skin, is also described. These multifunctional sensors can detect and distinguish between different stimuli, including pressure, temperature, and volatile organic compounds. All the sensing properties explored are stable under different bending/strain states.  相似文献   

12.
Silk protein is one of the a promising materials for on‐skin and implantable electronic devices due to its biodegradability and biocompatibility. However, its intrinsic brittleness as well as poor thermal stability limits its applications. In this work, robust and heat‐resistant silk fibroin composite membranes (SFCMs) are synthesized by mesoscopic doping of regenerated silk fibroin (SF) via the strong interactions between SF and polyurethane. Surprisingly, the obtained SFCMs can endure the tensile test (>200%) and thermal treatment (up to 160 °C). Attributed to these advantages, traditional micromachining techniques, such as inkjet printing, can be carried out to print flexible circuits on such protein substrate. Based on this, Ag nanofibers (NFs) and Pt NFs networks are successfully constructed on both sides of the SFCMs to function as heaters and temperature sensors, respectively. Furthermore, the integrated protein‐based electronic skin (PBES) exhibits high thermal stability and temperature sensitivity (0.205% °C?1). Heating and temperature distribution detection are realized by array‐type PBES, contributing to potential applications in dredging of the blood vessel for alleviating arthritis. This PBES is also inflammation‐free and air‐permeable so that it can directly be laminated onto human skin for long‐term thermal management.  相似文献   

13.
Electronic tattoos (E‐tattoos), which can be intimately mounted on human skin for noninvasive and high‐fidelity sensing, have attracted the attention of researchers in the field of wearable electronics. However, fabricating E‐tattoos that are capable of self‐healing and sensing multistimuli, similar to the inherent attributes of human skin, is still challenging. Herein, a healable and multifunctional E‐tattoo based on a graphene/silk fibroin/Ca2+ (Gr/SF/Ca2+) combination is reported. The highly flexible E‐tattoos are prepared through printing or writing using Gr/SF/Ca2+ suspension. The graphene flakes distributed in the matrix form an electrically conductive path that is responsive to environmental changes, such as strain, humidity, and temperature variations, endowing the E‐tattoo with high sensitivity to multistimuli. The performance of the E‐tattoo is investigated as a strain, humidity, and temperature sensor that shows high sensitivity, a fast response, and long‐term stability. The E‐tattoo is remarkably healed after damage by water because of the reformation of hydrogen and coordination bonds at the fractured interface. The healing efficiency is 100% in only 0.3 s. Finally, as proof of concept, its applications for monitoring of electrocardiograms, breathing, and temperature are shown. Based on its unique properties and superior performance, the Gr/SF/Ca2+ E‐tattoo may be a promising candidate material for epidermal electronics.  相似文献   

14.
Electronic skin sensing devices are an emerging technology and have substantial demand in vast practical fields including wearable sensing, robotics, and user‐interactive interfaces. In order to imitate or even outperform the capabilities of natural skin, the keen exploration of materials, device structures, and new functions is desired. However, the very high resistance and the inadequate current switching and sensitivity of reported electronic skins hinder to further develop and explore the promising uses of the emerging sensing devices. Here, a novel resistive cloth‐based skin‐like sensor device is reported that possesses unprecedented features including ultrahigh current‐switching behavior of ≈107 and giant high sensitivity of 1.04 × 104–6.57 × 106 kPa?1 in a low‐pressure region of <3 kPa. Notably, both superior features can be achieved by a very low working voltage of 0.1 V. Taking these remarkable traits, the device not only exhibits excellent sensing abilities to various mechanical forces, meeting various applications required for skin‐like sensors, but also demonstrates a unique competence to facile integration with other functional devices for various purposes with ultrasensitive capabilities. Therefore, the new methodologies presented here enable to greatly enlarge and advance the development of versatile electronic skin applications.  相似文献   

15.
The rational design of high‐performance flexible pressure sensors attracts attention because of the potential applications in wearable electronics and human–machine interfacing. For practical applications, pressure sensors with high sensitivity and low detection limit are desired. Here, ta simple process to fabricate high‐performance pressure sensors based on biomimetic hierarchical structures and highly conductive active membranes is presented. Aligned carbon nanotubes/graphene (ACNT/G) is used as the active material and microstructured polydimethylsiloxane (m‐PDMS) molded from natural leaves is used as the flexible matrix. The highly conductive ACNT/G films with unique coalescent structures, which are directly grown using chemical vapor deposition, can be conformably coated on the m‐PDMS films with hierarchical protuberances. Flexible ACNT/G pressure sensors are then constructed by putting two ACNT/G/PDMS films face to face with the orientation of the ACNTs in the two films perpendicular to each other. Due to the unique hierarchical structures of both the ACNT/G and m‐PDMS films, the obtained pressure sensors demonstrate high sensitivity (19.8 kPa?1, <0.3 kPa), low detection limit (0.6 Pa), fast response time (<16.7 ms), low operating voltage (0.03 V), and excellent stability for more than 35 000 loading–unloading cycles, thus promising potential applications in wearable electronics.  相似文献   

16.
With the rapid advancement in artificial intelligence, wearable electronic skins have attracted substantial attention. However, the fabrication of such devices with high elasticity and breathability is still a challenge and highly desired. Here, a route to develop an all‐fiber structured electronic skin with a scalable electrospinning fabrication technique is reported. The fabricated electronic skin is demonstrated to exhibit high pressure sensing with a sensitivity of 0.18 V kPa?1 in the detection range of 0–175 kPa. This wearable device could maintain prominent sensing performance and mechanical stability in the presence of large deformation, even when the elastic deformation is up to 50%. The electronic skin is easily conformable on different desired objects for real‐time spatial mapping and long‐term tactile sensing. Besides, it possesses high gas permeability with a water vapor transmittance rate of 10.26 kg m?2 d?1. More importantly, the electronic skin is capable of working in a self‐powered manner and even serves as a reliable power source to effectively drive small electronics. Possessing several compelling features, such as high sensitivity, high elasticity, high breathability as well as being self‐powered and scalable in fabrication, the presented device paves a pathway for smart electronic skins.  相似文献   

17.
This study reports on the fabrication of pressure/temperature/strain sensors and all‐solid‐state flexible supercapacitors using only polydimethylsiloxane coated microporous polypyrrole/graphene foam composite (PDMS/PPy/GF) as a common material. A dual‐mode sensor is designed with PDMS/PPy/GF, which measures pressure and temperature with the changes of current and voltage, respectively, without interference to each other. The fabricated dual‐mode sensor shows high sensitivity, fast response/recovery, and high durability during 10 000 cycles of pressure loading. The pressure is estimated using the thermoelectric voltage induced by simultaneous increase in temperature caused by a finger touch on the sensor. Additionally, a resistor‐type strain sensor fabricated using the same PDMS/PPy/GF could detect the strain up to 50%. Flexible, high performance supercapacitor used as a power supply is fabricated with electrodes of PPy/GF for its high surface area and pseudocapacitance. Furthermore, an integrated system of such fabricated multifunctional sensors and a supercapacitor on a skin‐attachable flexible substrate using liquid–metal interconnections operates well, whereas sensors are driven by the power of the supercapacitor. This study clearly demonstrates that the appropriate choice of a single functional material enables fabrication of active multifunctional sensors for pressure, temperature, and strain, as well as the supercapacitor, that could be used in wirelessly powered wearable devices.  相似文献   

18.
There is a growing demand for flexible and soft electronic devices. In particular, stretchable, skin‐mountable, and wearable strain sensors are needed for several potential applications including personalized health‐monitoring, human motion detection, human‐machine interfaces, soft robotics, and so forth. This Feature Article presents recent advancements in the development of flexible and stretchable strain sensors. The article shows that highly stretchable strain sensors are successfully being developed by new mechanisms such as disconnection between overlapped nanomaterials, crack propagation in thin films, and tunneling effect, different from traditional strain sensing mechanisms. Strain sensing performances of recently reported strain sensors are comprehensively studied and discussed, showing that appropriate choice of composite structures as well as suitable interaction between functional nanomaterials and polymers are essential for the high performance strain sensing. Next, simulation results of piezoresistivity of stretchable strain sensors by computational models are reported. Finally, potential applications of flexible strain sensors are described. This survey reveals that flexible, skin‐mountable, and wearable strain sensors have potential in diverse applications while several grand challenges have to be still overcome.  相似文献   

19.
Recently, macroporous graphene monoliths (MGMs), with ultralow density and good electrical conductivity, have been considered as excellent pressure sensors due to their excellent elasticity with a rapid rate of recovery. However, MGMs can only exhibit good sensitivity when the strain is higher than 20%, which is undesirable for touch‐type pressure sensors, such as artificial skin. Here, an innovative method for the fabrication of freestanding flexible graphene film with bubbles decorated on honeycomb‐like network is demonstrated. Due to the switching effect depended on “point‐to‐point” and “point‐to‐face” contact modes, the graphene pressure sensor has an ultrahigh sensitivity of 161.6 kPa?1 at a strain less than 4%, several hundred times higher than most previously reported pressure sensors. Moreover, the graphene pressure sensor can monitor human motions such as finger bending and pulse with a very low operating voltage of 10 mV, which is sufficiently low to allow for powering by energy‐harvesting devices, such as triboelectric generators. Therefore, the high sensitivity, low operating voltage, long cycling life, and large‐scale fabrication of the pressure sensors make it a promising candidate for manufacturing low‐cost artificial skin.  相似文献   

20.
As an important branch of wearable electronics, flexible pressure sensors have attracted extensive research owing to their wide range of applications, such as human–machine interfaces and health monitoring. To fulfill the requirements for different applications, new material design and device fabrication strategies have been developed in order to manipulate the mechanical and electrical properties and enhance device performance. In this paper, the important progresses in flexible pressure sensor development over recent years are selectively reviewed from a material and application perspective. First, an overview of the fundamental working mechanism and the systematic design approach is presented. Particularly, how the theoretical modeling has been used as an auxiliary tool to achieve better sensing performance is discussed. A number of applications, including human–machine interfaces, electronic skin and health monitoring, and certain application‐driven functions, e.g., pressure distribution visualization and direction‐sensitive force detection, are highlighted. Lastly, various advanced manufacturing methods used for realizing large‐scale fabrication are introduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号