首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many high charge carrier mobility (μ) active layers within organic field‐effect transistor (OFET) configurations exhibit non‐linear current–voltage characteristics that may drift with time under applied bias and, when applying conventional equations for ideal FETs, may give inconsistent μ values. This study demonstrates that the introduction of electron deficient fullerene acceptors into thin films comprised of the high‐mobility semiconducting polymer PCDTPT suppresses an undesirable “double‐slope” in the current–voltage characteristics, improves operational stability, and changes ambipolar transport to unipolar transport. Examination of other high μ polymers shows general applicability. This study also shows that one can further reduce instability by tuning the relative electron affinity of the polymer and fullerene by creating blends containing different fullerene derivatives and semiconductor polymers. One can obtain hole μ values up to 5.6 cm2 V–1 s–1 that are remarkably stable over multiple bias‐sweeping cycles. The results provide a simple, solution‐processable route to dictate transport properties and improve semiconductor durability in systems that display similar non‐idealities.  相似文献   

2.
To achieve semiconducting materials with high electron mobility in organic field‐effect transistors (OFETs), low‐lying energy levels (the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO)) and favorable molecular packing and ordering are two crucial factors. Here, it is reported that the incorporation of pyridine and selenophene into the backbone of a diketopyrrolopyrrole (DPP)‐based copolymer produces a high‐electron‐mobility semiconductor, PDPPy‐Se. Compared with analogous polymers based on other DPP derivatives and selenophene, PDPPy‐Se features a lower LUMO that can decrease the electron transfer barrier for more effective electron injection, and simultaneously a lower HOMO that, however, can increase the hole transfer barrier to suppress the hole injection. Combined with thermal annealing at 240 °C for thin film morphology optimization to achieve large‐scale crystallite domains with tight molecular packing for effective charge transport along the conducting channel, OFET devices fabricated with PDPPy‐Se exhibit an n‐type‐dominant performance with an electron mobility (μe) as high as 2.22 cm2 V?1 s?1 and a hole/electron mobility ratio (μhe) of 0.26. Overall, this study demonstrates a simple yet effective approach to boost the electron mobility in organic transistors by synergistic use of pyridine and selenophene in the backbone of a DPP‐based copolymer.  相似文献   

3.
The synthesis of a new tetrathiafulvalene derivative with an electron‐withdrawing benzothiadiazole moiety and its use in thin‐film organic field‐effect transistors (OFETs) are reported. Compared to reported OFETs with other TTF derivatives, a high hole mobility up to 0.73 cm2 V?1 s?1, low off‐current and high on/off ratio up to 105 are demonstrated. In addition, the developed OFETs show fast responsiveness toward chemical vapors of DECP (diethyl chlorophosphate) or POCl3 which are simulants of phosphate‐based nerve agents. In contrast to previously reported OFET‐based sensors, off‐current is used as the output signal, which increases quickly upon exposure to either DECP or POCl3 vapors. High sensitivity is demonstrated toward DECP and POCl3 vapors, with concentrations as low as 10 ppb being detected. These OFETs are also responsive to TNT vapor. The sensing mechanisms for the new type of OFET are discussed.  相似文献   

4.
仪明东  张宁  解令海  黄维 《半导体学报》2015,36(10):104001-6
在本文中,我们利用钛青铜(CuPc)和氟化钛青铜(F16CuPc)作为空穴传输层和电子传输层的制备了具有异质结结构的有机场效应晶体管(OFETs)。与单层的F16CuPc晶体管相比,异质结结构的晶体管的电子迁移率从3.1×10-3cm2/Vs提高至8.7×10-3cm2/vs,然而,空穴的传输行为却没有被观测到。为了提高空穴的注入能力,我们利用MoO3对源-漏电极进行了修饰,有效地改善了空穴注入。并进一步证实了MoO3的引入使得器件的接触电阻变小,平衡了电子和空穴的注入,从而最终实现了器件的双极性传输。  相似文献   

5.
Organic field‐effect transistors (OFETs) have attracted much attention for the next‐generation electronics. Despite of the rapid developments of OFETs, operational stability is a big challenge for their commercial applications. Moreover, the actual mechanism behind the degradation of electron transport is still poorly understood. Here, the electrical characteristics of poly{[N,N‐9‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,59‐(2,29‐bithiophene)} (P(NDI2OD‐T2)) thin‐film transistors (TFTs) as a function of semiconductor/dielectric interfacial property and environment are systematically investigated, in particular, how the copresence of water, oxygen, and active hydrogen on the surface of dielectric leads to a sharp drop‐off in threshold voltage. Evidence is found that an acid–base neutralization reaction occurring at the interface, as a combined effect of the chemical instability of dielectrics and the electrochemical instability of organic semiconductors, contributes to the significant electron trapping on the interface of P(NDI2OD‐T2) TFTs. Two strategies, increasing the intrinsic electrochemical stability of semiconductor and decreasing the chemical reactivity of gate dielectric, are demonstrated to effectively suppress the reaction and thus improve the operational stability of n‐type OFETs. The results provide an alternative degradation pathway to better understand the charge transport instability in n‐type OFETs, which is advantageous to construct high‐performance OFETs with long‐term stability.  相似文献   

6.
Herein, we report experimental studies of electron and hole transport in thin films of [6,6]‐phenyl C61 butyric acid methyl ester (PCBM) and in blends of poly[2‐methoxy‐5‐(3′,7′‐dimethyloctyloxy)‐1,4‐phenylenevinylene] (MDMO‐PPV) with PCBM. The low‐field hole mobility in pristine MDMO‐PPV is of the order of 10–7 cm2 V–1 s–1, in agreement with previous studies, whereas the electron mobility in pristine PCBM was found by current‐density–voltage (J–V) measurements to be of the order of 10–2 cm2 V–1 s–1, which is about one order of magnitude greater than previously reported. Adding PCBM to the blend increases both electron and hole mobilities, compared to the pristine polymer, and results in less dispersive hole transport. The hole mobility in a blend containing 67 wt.‐% PCBM is at least two orders of magnitude greater than in the pristine polymer. This result is independent of measurement technique and film thickness, indicating a true bulk property of the material. We therefore propose that PCBM may assist hole transport in the blend, either by participating in hole transport or by changing the polymer‐chain packing to enhance hole mobility. Time‐of‐flight mobility measurements of PCBM dispersed in a polystyrene matrix yield electron and hole mobilities of similar magnitude and relatively non‐dispersive transport. To the best of our knowledge, this is the first report of hole transport in a methanofullerene. We discuss the conditions under which hole transport in the fullerene phase of a polymer/fullerene blend may be expected. The relevance to photovoltaic device function is also discussed.  相似文献   

7.
The morphological effects of the incorporation of C60 into blended thin‐films of poly(3‐hexylthiophene) and [6,6]‐phenyl C61 butyric acid methyl ester (PCBM) are investigated. The results show that addition of C60 readily alters the growth‐rate and morphology of PCBM crystallites under different environmental conditions. The effect of C60 on the growth of large PCBM crystallites is thoroughly characterized using optical microscopy, electron microscopy and UV‐visible absorption spectroscopy. Results show that C60 incorporation modifies fullerene aggregation and crystallization and greatly reduces the average crystallite size at C60 loadings of ≈50 wt% in the fullerene phase. Organic field‐effect transistors (OFETs) are prepared to evaluate the electron mobility of PCBM/C60 films and organic solar cells (OSCs) are fabricated from mixed‐fullerene active layers to evaluate their performance. It is demonstrated that the use of fullerene mixtures in organic electronic applications is a viable approach to produce more stable devices and to control the growth of micrometer‐sized fullerene crystals.  相似文献   

8.
Here, the performance of bulk‐heterojunction solar cells based on a series of bisadduct analogues of commonly used derivatives of C60 and C70, such PCBMs and their thienyl versions, is investigated. Due to their higher lowest unoccupied molecular orbital an increase in open‐circuit voltage and thus performance is expected. It is shown that the occurrence of a multitude of different isomers results in a decrease in the electron transport for some of the materials. Surprisingly, the solar‐cell characteristics are very similar for all materials. This apparent discrepancy is explained by a significant amount of shallow trapping occurring in the fullerene phase that does not hamper the solar cell performance due the filling of these shallow traps during illumination. Furthermore, the trisadduct analogue of [60]PCBM has been investigated, which, despite an even further increase in open‐circuit voltage, results in a significantly reduced device performance due to a strong deterioration of the electron mobility in the fullerene phase.  相似文献   

9.
Alkyl chains are basic units in the design of organic semiconductors for purposes of enhancing solubility, tuning electronic energy levels, and tailoring molecular packing. This work demonstrates that the carrier mobilities of indeno[1,2‐b ]fluorene‐6,12‐dione ( IFD )‐based semiconductors can be dramatically enhanced by the incorporation of sulfur‐ or nitrogen‐linked side chains. Three IFD derivatives possessing butyl, butylthio, and dibutylamino substituents are synthesized, and their organic field‐effect transistors (OFET) are fabricated and characterized. The IFD possessing butyl substituents exhibits a very poor charge transport property with mobility lower than 10?7 cm2 V?1 s?1. In contrast, the hole mobility is dramatically increased to 1.03 cm2 V?1 s?1 by replacing the butyl units with dibutylamino groups ( DBA‐IFD ), while the butylthio‐modified IFD ( BT‐IFD ) derivative exhibits a high and balanced ambipolar charge transport property with the maximum hole and electron mobilities up to 0.71 and 0.65 cm2 V?1 s?1, respectively. Moreover, the complementary metal–oxide–semiconductor‐like inverters incorporated with the ambipolar OFETs shows sharp inversions with a maximum gain value up to 173. This work reveals that modification of the aromatic core with heteroatom‐linked side chains, such as alkylthio or dialkylamino, can be an efficient strategy for the design of high‐performance organic semiconductors.  相似文献   

10.
Interfaces between the photoactive and charge transport layers are crucial for the performance of perovskite solar cells. Surface passivation of SnO2 as electron transport layer (ETL) by fullerene derivatives is known to improve the performance of n–i–p devices, yet organic passivation layers are susceptible to removal during perovskite deposition. Understanding the nature of the passivation is important for further optimization of SnO2 ETLs. X‐ray photoelectron spectroscopy depth profiling is a convenient tool to monitor the fullerene concentration in passivation layers at a SnO2 interface. Through a comparative study using [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) and [6,6]‐phenyl‐C61‐butyric acid (PCBA) passivation layers, a direct correlation is established between the formation of interfacial chemical bonds and the retention of passivating fullerene molecules at the SnO2 interface that effectively reduces the number of defects and enhances electron mobility. Devices with only a PCBA‐monolayer‐passivated SnO2 ETL exhibit significantly improved performance and reproducibility, achieving an efficiency of 18.8%. Investigating thick and solvent‐resistant C60 and PCBM‐dimer layers demonstrates that the charge transport in the ETL is only improved by chemisorption of the fullerene at the SnO2 surface.  相似文献   

11.
The efficiency of bulk heterojunction (BHJ) organic photovoltaics is sensitive to the morphology of the fullerene network that transports electrons through the device. This sensitivity makes it difficult to distinguish the contrasting roles of local electron mobility (how easily electrons can transfer between neighboring fullerene molecules) and macroscopic electron mobility (how well‐connected is the fullerene network on device length scales) in solar cell performance. In this work, a combination of density functional theory (DFT) calculations, flash‐photolysis time‐resolved microwave conductivity (TRMC) experiments, and space‐charge‐limit current (SCLC) mobility estimates are used to examine the roles of local and macroscopic electron mobility in conjugated polymer/fullerene BHJ photovoltaics. The local mobility of different pentaaryl fullerene derivatives (so‐called ‘shuttlecock’ molecules) is similar, so that differences in solar cell efficiency and SCLC mobilities result directly from the different propensities of these molecules to self‐assemble on macroscopic length scales. These experiments and calculations also demonstrate that the local mobility of phenyl‐C60 butyl methyl ester (PCBM) is an order of magnitude higher than that of other fullerene derivatives, explaining why PCBM has been the acceptor of choice for conjugated polymer BHJ devices even though it does not form an optimal macroscopic network. The DFT calculations indicate that PCBM's superior local mobility comes from the near‐spherical nature of its molecular orbitals, which allow strong electronic coupling between adjacent molecules. In combination, DFT and TRMC techniques provide a tool for screening new fullerene derivatives for good local mobility when designing new molecules that can improve on the macroscopic electron mobility offered by PCBM.  相似文献   

12.
Organic field‐effect transistors (OFETs) are used to investigate the evolution of the solid‐state microstructure of blends of poly(3‐hexylthiophene) (P3HT) and [6,6]‐phenyl C61‐butyric acid methyl ester (PC61BM) upon annealing. Changes in the measured field‐effect mobility of holes and electrons are shown to reveal relevant information about the phase‐segregation in this system, which are in agreement with a eutectic phase behavior. Using dual‐gate OFETs and in‐situ measurements, it is demonstrated that the spatial‐ and time‐dependence of microstructural changes in such polymer:fullerene blend films can also be probed. A percolation‐theory‐based simulation is carried out to illustrate how phase‐segregation in this system is expected to lead to a substantial decrease in the electron conductivity in an OFET channel, in qualitative agreement with experimental results.  相似文献   

13.
In this study, polymer‐based organic field‐effect transistors (OFETs) that exhibit alignment‐induced mobility enhancement, very small device‐to‐device variation, and high operational stability are successfully fabricated by a simple coating method of semiconductor solutions on highly hydrophobic nanogrooved surfaces. The highly hydrophobic nanogrooved surfaces (water contact angle >110°) are effective at inducing unidirectional alignment of polymer backbone structures with edge‐on orientation and are advantageous for realizing high operational stability because of their water‐repellent nature. The dewetting of the semiconductor solution is a critical problem in the thin film formation on highly hydrophobic surfaces. Dewetting during spin coating is suppressed by surrounding the hydrophobic regions with hydrophilic ones under appropriate designs. For the OFET array with an aligned terrace‐phase active layer of poly(2,5‐bis(3‐hexadecylthiophene‐2‐yl)thieno[3,2‐b]thiophene), the hole mobility in the saturation regime of 30 OFETs with channel current direction parallel to the nanogrooves is 0.513 ± 0.018 cm2 V?1 s?1, which is approximately double that of the OFETs without nanogrooves, and the intrinsic operational stability is comparable to the operational stability of amorphous‐silicon field‐effect transistors. In other words, alignment‐induced mobility enhancement and high operational stability are successfully achieved with very small device‐to‐device variation. This coating method should be a promising means of fabricating high‐performance OFETs.  相似文献   

14.
Four soluble dialkylated tetrathienoacene ( TTAR) ‐based small molecular semiconductors featuring the combination of a TTAR central core, π‐conjugated spacers comprising bithiophene ( bT ) or thiophene ( T ), and with/without cyanoacrylate ( CA ) end‐capping moieties are synthesized and characterized. The molecule DbT‐TTAR exhibits a promising hole mobility up to 0.36 cm2 V?1 s?1 due to the enhanced crystallinity of the microribbon‐like films. Binary blends of the p‐type DbT‐TTAR and the n‐type dicyanomethylene substituted dithienothiophene‐quinoid ( DTTQ‐11 ) are investigated in terms of film morphology, microstructure, and organic field‐effect transistor (OFET) performance. The data indicate that as the DbT‐TTAR content in the blend film increases, the charge transport characteristics vary from unipolar (electron‐only) to ambipolar and then back to unipolar (hole‐only). With a 1:1 weight ratio of DbT‐TTAR DTTQ‐11 in the blend, well‐defined pathways for both charge carriers are achieved and resulted in ambipolar transport with high hole and electron mobilities of 0.83 and 0.37 cm2 V?1 s?1, respectively. This study provides a viable way for tuning microstructure and charge carrier transport in small molecules and their blends to achieve high‐performance solution‐processable OFETs.  相似文献   

15.
Organic field‐effect transistors (OFETs) based upon blends of small molecular semiconductors and polymers show promise for high performance organic electronics applications. Here the charge transport characteristics of high mobility p‐channel organic transistors based on 2,8‐difluoro‐5,11‐bis(triethylsilylethynyl) anthradithiophene:poly(triarylamine) blend films are investigated. By simple alteration of the film processing conditions two distinct film microstructures can be obtained: one characterized by small spherulitic grains (SG) and one by large grains (LG). Charge transport measurements reveal thermally activated hole transport in both SG and LG film microstructures with two distinct temperature regimes. For temperatures >115 K, gate voltage dependent activation energies (EA) in the range of 25–60 meV are derived. At temperatures <115 K, the activation energies are smaller and typically in the range 5–30 meV. For both film microstructures hole transport appears to be dominated by trapping at the grain boundaries. Estimates of the trap densities suggests that LG films with fewer grain boundaries are characterized by a reduced number of traps that are less energetically disordered but deeper in energy than for small SG films. The effects of source and drain electrode treatment with self‐assembled monolayers (SAMs) on current injection is also investigated. Fluorinated thiol SAMs were found to alter the work function of gold electrodes by up to ~1 eV leading to a lower contact resistance. However, charge transport analysis suggests that electrode work function is not the only parameter to consider for efficient charge injection.  相似文献   

16.
Systematic creation of polymeric semiconductors from novel building blocks is critical for improving charge transport properties in organic field‐effect transistors (OFETs). A series of ultralow‐bandgap polymers containing thienoisoindigo (TIIG) as a thiophene analogue of isoindigo (IIG) is synthesized. The UV‐Vis absorptions of the TIIG‐based polymers ( PTIIG‐T , PTIIG‐Se , and PTIIG‐DT ) exhibit broad bands covering the visible to near‐infrared range of up to 1600 nm. All the polymers exhibit unipolar p‐channel operations with regard to gold contacts. PTIIG‐DT with centrosymmetric donor exhibits a maximum mobility of 0.20 cm2 V?1 s?1 under gold contacts, which is higher than those of the other polymers containing axisymmetric donors. Intriguingly, OFETs fabricated with aluminum electrodes show ambipolar charge transport with hole and electron mobilities of up to 0.28 ( PTIIG‐DT ) and 0.03 ( PTIIG‐T ) cm2 V?1 s?1, respectively. This is a record value for the hitherto reported TIIG‐based OFETs. The finding demonstrates that TIIG‐based polymers can potentially function as either unipolar or ambipolar semiconductors without reliance on the degree of electron affinity of the co‐monomers.  相似文献   

17.
The preparation of regular microstructures with liquid crystalline materials for organic field effect transistors (OFETs) is an attractive but challenging issue. However, it is usually limited by the difficulty of forming large‐area single crystals aligned in a desirable direction. Herein, several terthiophene (TTP) smectic liquid crystals such as 8‐TTP‐8 and 12‐TTP‐11OH are patterned into highly crystalline microstripes by a sandwich system through a dewetting method. Morphology and orientation of the microstripes strongly depend on preparation temperature. Microstripes prepared below crystalline temperature are uniform, well‐ordered, and show high field effect transistor (FET) mobility. Meanwhile, π–π stacking direction of the TTP backbone is perpendicular to the microstripe and the molecules stack in layer structure, standing up on the SiO2/Si substrate, which would provide an effective pathway for p‐type charge transport. However, higher preparation temperatures at liquid crystalline or isotropic liquid range induce many defects in the crystal formation process and cause incline of the unit cell, thus leading to a sharp decrease in FET mobility. A possible mechanism of molecular stacking at different temperature range is proposed. This strategy promised to provide a new opportunity for the high cost‐efficiency fabrication of OFETs.  相似文献   

18.
By changing the packing motif of the conjugated cores and the thin‐film microstructures, unipolar organic semiconductors may be converted into ambipolar materials. A combined experimental and theoretical investigation is conducted on the thin‐film organic field‐effect transistors (OFETs) of three organic semiconductors that have the same conjugated core structure of s‐indaceno[1,2‐b:5,6‐b′]dithiophene‐4,9‐dione but with different n‐alkyl groups. The optical and electrochemical measurements suggest that the three organic semiconductors have very similar energy levels; however, their OFETs exhibit dramatically different transport characteristics. Transistors based on compound 1a or 1c show ambipolar transport properties, while those based on compound 1b show p‐type unipolar behavior. Specifically, compound 1c is characterized as a good ambipolar semiconductor with the highest electron mobility of 0.22 cm2 V?1 s?1 and the highest hole mobility of 0.03 cm2 V?1 s?1. Complementary metal oxide semiconductor (CMOS) inverters incorporated with compound 1c show sharp inversions with high gains above 50. Theoretical investigations reveal that the drastic difference in the transport properties of the three materials is due to the difference in their molecular packing and film microstructures.  相似文献   

19.
Delocalized singlet biradical hydrocarbons hold promise as new semiconducting materials for high‐performance organic devices. However, to date biradical organic molecules have attracted little attention as a material for organic electronic devices. Here, this work shows that films of a crystallized diphenyl derivative of s‐indacenodiphenalene (Ph2‐IDPL) exhibit high ambipolar mobilities in organic field‐effect transistors (OFETs). Furthermore, OFETs fabricated using Ph2‐IDPL single crystals show high hole mobility (μh = 7.2 × 10?1 cm2 V?1 s?1) comparable to that of amorphous Si. Additionally, high on/off ratios are achieved for Ph2‐IDPL by inserting self‐assembled mono­layer of alkanethiol between the semiconducting layer and the Au electrodes. These findings open a door to the application of ambipolar OFETs to organic electronics such as complementary metal oxide semiconductor logic circuits.  相似文献   

20.
Solution-processed thin film transistors can be implemented using simple and low cost fabrication, and are the best candidates for commercialization due to their application to a range of wearable electronics. We report an ambipolar charge injection interlayer that can improve both hole and electron injection in organic field-effect transistors (OFETs) with inexpensive source-drain electrodes. The solution processed ambipolar injection layer is fabricated by selective dispersion of semiconducting single walled carbon nanotubes using poly(9,9-dioctylfluorene). OFETs with molybdenum (Mo) contacts and interlayer (Mo/interlayer OFETs) exhibit superior performance, including higher hole and electron mobilities, device yield, lower threshold voltages, and lower trap densities than those of bare transistors. While OFETs with Mo contacts show unipolar p-type behaviour, Mo/interlayer OFETs display ambipolar transport due to significant enhancement of electron injection. In the p-type region, transistor performance is comparable to devices with gold (Au). Hole mobility is increased approximately ten-fold over devices with only Mo contacts. The electron mobility of Mo/interlayer OFETs is 0.05 cm2V−1s−1, which is higher than devices with Au electrodes. The p-type contact resistances of Mo/interlayer OFETs are half those of OFETs with Mo contacts. Trap density in Mo/interlayer OFETs is one order magnitude lower than that of pristine devices. We also demonstrate that this approach is extendible to other metals (nickel) and n-type semiconductors with different energy levels. Injection by tunnelling is suggested as the mechanism of ambipolar injection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号