首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lithium‐oxygen (Li‐O2) batteries are one of the most promising candidates for high‐energy‐density storage systems. However, the low utilization of porous carbon and the inefficient transport of reactants in the cathode limit terribly the practical capacity and, in particular, the rate capability of state‐of‐the‐art Li‐O2 batteries. Here, free‐standing, hierarchically porous carbon (FHPC) derived from graphene oxide (GO) gel in nickel foam without any additional binder is synthesized by a facile and effective in situ sol‐gel method, wherein the GO not only acts as a special carbon source, but also provides the framework of a 3D gel; more importantly, the proper acidity via its intrinsic COOH groups guarantees the formation of the whole structure. Interestingly, when employed as a cathode for Li‐O2 batteries, the capacity reaches 11 060 mA h g?1 at a current density of 0.2 mA cm?2 (280 mA g?1); and, unexpectedly, a high capacity of 2020 mA h g?1 can be obtained even the current density increases ten times, up to 2 mA cm?2 (2.8 A g?1), which is the best rate performance for Li‐O2 batteries reported to date. This excellent performance is attributed to the synergistic effect of the loose packing of the carbon, the hierarchical porous structure, and the high electronic conductivity of the Ni foam.  相似文献   

2.
Ultrathin MnO2/graphene oxide/carbon nanotube (G/M@CNT) interlayers are developed as efficient polysulfide‐trapping shields for high‐performance Li–S batteries. A simple layer‐by‐layer procedure is used to construct a sandwiched vein–membrane interlayer of thickness 2 µm and areal density 0.104 mg cm?2 by loading MnO2 nanoparticles and graphene oxide (GO) sheets on superaligned carbon nanotube films. The G/M@CNT interlayer provides a physical shield against both polysulfide shuttling and chemical adsorption of polysulfides by MnO2 nanoparticles and GO sheets. The synergetic effect of the G/M@CNT interlayer enables the production of Li–S cells with high sulfur loadings (60–80 wt%), a low capacity decay rate (?0.029% per cycle over 2500 cycles at 1 C), high rate performance (747 mA h g?1 at a charge rate of 10 C), and a low self‐discharge rate with high capacity retention (93.0% after 20 d rest). Electrochemical impedance spectroscopy, cyclic voltammetry, and scanning electron microscopy observations of the Li anodes after cycling confirm the polysulfide‐trapping ability of the G/M@CNT interlayer and show its potential in developing high‐performance Li–S batteries.  相似文献   

3.
The development of low‐cost, high‐energy cathodes from nontoxic, broadly available resources is a big challenge for the next‐generation rechargeable lithium or lithium‐ion batteries. As a promising alternative to traditional intercalation‐type chemistries, conversion‐type metal fluorides offer much higher theoretical capacity and energy density than conventional cathodes. Unfortunately, these still suffer from irreversible structural degradation and rapid capacity fading upon cycling. To address these challenges, here a versatile and effective strategy is harnessed for the development of metal fluoride–carbon (C) nanocomposite nanofibers as flexible, free‐standing cathodes. By taking iron trifluoride (FeF3) as a successful example, assembled FeF3–C/Li cells with a high reversible FeF3 capacity of 550 mAh g?1 at 100 mA g?1 (three times that of traditional cathodes, such as lithium cobalt oxide, lithium nickel cobalt aluminum oxide, and lithium nickel cobalt manganese oxide) and excellent stability (400+ cycles with little‐to‐no degradation) are demonstrated. The promising characteristics can be attributed to the nanoconfinement of FeF3 nanoparticles, which minimizes the segregation of Fe and LiF upon cycling, the robustness of the electrically conductive C network and the prevention of undesirable reactions between the active material and the liquid electrolyte using the composite design and electrolyte selection.  相似文献   

4.
Flexible freestanding electrodes are highly desired to realize wearable/flexible batteries as required for the design and production of flexible electronic devices. Here, the excellent electrochemical performance and inherent flexibility of atomically thin 2D MoS2 along with the self‐assembly properties of liquid crystalline graphene oxide (LCGO) dispersion are exploited to fabricate a porous anode for high‐performance lithium ion batteries. Flexible, free‐standing MoS2–reduced graphene oxide (MG) film with a 3D porous structure is fabricated via a facile spontaneous self‐assembly process and subsequent freeze‐drying. This is the first report of a one‐pot self‐assembly, gelation, and subsequent reduction of MoS2/LCGO composite to form a flexible, high performance electrode for charge storage. The gelation process occurs directly in the mixed dispersion of MoS2 and LCGO nanosheets at a low temperature (70 °C) and normal atmosphere (1 atm). The MG film with 75 wt% of MoS2 exhibits a high reversible capacity of 800 mAh g?1 at a current density of 100 mA g?1. It also demonstrates excellent rate capability, and excellent cycling stability with no capacity drop over 500 charge/discharge cycles at a current density of 400 mA g?1.  相似文献   

5.
6.
7.
The sp2‐hybridized nanocarbon (e.g., carbon nanotubes (CNTs) and graphene) exhibits extraordinary mechanical strength and electrical conductivity but limited external accessible surface area and a small amount of pores, while nanostructured porous carbon affords a huge surface area and abundant pore structures but very poor electrical conductance. Herein the rational hybridization of the sp2 nanocarbon and nanostructured porous carbon into hierarchical all‐carbon nanoarchitectures is demonstrated, with full inherited advantages of the component materials. The sp2 graphene/CNT interlinked networks give the composites good electrical conductivity and a robust framework, while the meso‐/microporous carbon and the interlamellar compartment between the opposite graphene accommodate sulfur and polysulfides. The strong confinement induced by micro‐/mesopores of all‐carbon nanoarchitectures renders the transformation of S8 crystal into amorphous cyclo‐S8 molecular clusters, restraining the shuttle phenomenon for high capacity retention of a lithium‐sulfur cell. Therefore, the composite cathode with an ultrahigh specific capacity of 1121 mAh g?1 at 0.5 C, a favorable high‐rate capability of 809 mAh g?1 at 10 C, a very low capacity decay of 0.12% per cycle, and an impressive cycling stability of 877 mAh g?1 after 150 cycles at 1 C. As sulfur loading increases from 50 wt% to 77 wt%, high capacities of 970, 914, and 613 mAh g?1 are still available at current densities of 0.5, 1, and 5 C, respectively. Based on the total mass of packaged devices, gravimetric energy density of GSH@APC‐S//Li cell is expected to be 400 Wh kg?1 at a power density of 10 000 W kg?1, matching the level of engine driven systems.  相似文献   

8.
Li2MnSiO4/C nanocomposite with hierarchical macroporosity is prepared with poly(methyl methacrylate) (PMMA) colloidal crystals as a sacrificial hard‐template and water‐soluble phenol‐formaldehyde (PF) resin as the carbon source. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses confirm that the periodic macropores are ≈400 nm in diameter with 20–40 nm walls comprising Li2MnSiO4/C nanocrystals that produce additional large mesopores (< 30 nm) between the nanocrystals. The nanostructured Li2MnSiO4/C cathode exhibits a high reversible discharge capacity of 200 mAh g?1 at C/10 (16 mA g?1) rate at 1.5–4.8 V at 45 °C. Although the discharge capacity can be further increased on operating at 55 °C, the sample exhibits a relatively fast capacity fade at 55 °C, which can be partially solved by simply narrowing the voltage window to avoid side reactions of the electrolyte. The good performance of the Li2MnSiO4/C cathodes is attributed to the unique macro‐/mesostructure of the silicate coupled with uniform carbon coating.  相似文献   

9.
The rational combination of conductive nanocarbon with sulfur leads to the formation of composite cathodes that can take full advantage of each building block; this is an effective way to construct cathode materials for lithium–sulfur (Li–S) batteries with high energy density. Generally, the areal sulfur‐loading amount is less than 2.0 mg cm?2, resulting in a low areal capacity far below the acceptable value for practical applications. In this contribution, a hierarchical free‐standing carbon nanotube (CNT)‐S paper electrode with an ultrahigh sulfur‐loading of 6.3 mg cm?2 is fabricated using a facile bottom–up strategy. In the CNT–S paper electrode, short multi‐walled CNTs are employed as the short‐range electrical conductive framework for sulfur accommodation, while the super‐long CNTs serve as both the long‐range conductive network and the intercrossed mechanical scaffold. An initial discharge capacity of 6.2 mA·h cm?2 (995 mA·h g?1), a 60% utilization of sulfur, and a slow cyclic fading rate of 0.20%/cycle within the initial 150 cycles at a low current density of 0.05 C are achieved. The areal capacity can be further increased to 15.1 mA·h cm?2 by stacking three CNT–S paper electrodes—resulting in an areal sulfur‐loading of 17.3 mg cm?2—for the cathode of a Li–S cell. The as‐obtained free‐standing paper electrode are of low cost and provide high energy density, making them promising for flexible electronic devices based on Li–S batteries.  相似文献   

10.
11.
A composite material made of graphene nanoribbons and iron oxide nanoparticles provides a remarkable route to lithium‐ion battery anode with high specific capacity and cycle stability. At a rate of 100 mA/g, the material exhibits a high discharge capacity of ~910 mAh/g after 134 cycles, which is >90% of the theoretical li‐ion storage capacity of iron oxide. Carbon black, carbon nanotubes, and graphene flakes have been employed by researchers to achieve conductivity and stability in lithium‐ion electrode materials. Herein, the use of graphene nanoribbons as a conductive platform on which iron oxide nanoparticles are formed combines the advantages of long carbon nanotubes and flat graphene surfaces. The high capacity over prolonged cycling achieved is due to the synergy between an electrically percolating networks of conductive graphene nanoribbons and the high lithium‐ion storage capability of iron oxide nanoparticles.  相似文献   

12.
Li‐S batteries can potentially deliver high energy density and power, but polysulfide shuttle and lithium dendrite formations on Li metal anode have been the major hurdle. The polysulfide shuttle becomes severe particularly when the areal loading of the active material (sulfur) is increased to deliver the high energy density and the charge/discharge current density is raised to deliver high power. This study reports a novel mechanochemical method to create trenches on the surface of carbon nanotubes (CNTs) in free‐standing 3D porous CNT sponges. Unique spiral trenches are created by pressures during the chemical treatment process, providing polysulfide‐philic surfaces for cathode and lithiophilic surfaces for anode. The Li‐S cells made from manufacturing‐friendly sulfur‐sandwiched cathodes and lithium‐infused anodes using the mechanochemically treated electrodes exhibit a strikingly high areal capacity as high as 13.3 mAh cm?2, which is only marginally reduced even with a tenfold increase in current density (16 mA cm?2), demonstrating both high “cell‐level” energy density and power. The outstanding performance can be attributed to the significantly improved reaction kinetics and lowered overpotentials coming from the reduced interfacial resistance and charge transfer resistance at both cathodes and anodes. The trench–wall CNT sponge simultaneously tackles the most critical problems on both the cathodes and anodes of Li‐S batteries, and this method can be utilized in designing new electrode materials for energy storage and beyond.  相似文献   

13.
High capacity cathode materials for long‐life rechargeable lithium batteries are urgently needed. Selenium cathode has recently attracted great research attention due to its comparable volumetric capacity to but much better electrical conductivity than widely studied sulfur cathode. However, selenium cathode faces similar issues as sulfur (i.e., shuttling of polyselenides, volumetric expansion) and high performance lithium‐selenium batteries (Li–Se) have not yet been demonstrated at selenium loading >60% in the electrode. In this work, a 3D mesoporous carbon nanoparticles and graphene hierarchical architecture to storage selenium as binder‐free cathode material (Se/MCN‐RGO) for high energy and long life Li–Se batteries is presented. Such architecture not only provides the electrode with excellent electrical and ionic conductivity, but also efficiently suppresses polyselenides shuttling and accommodates volume change during charge/discharge. At selenium content of 62% in the entire cathode, the free‐standing Se/MCN‐RGO exhibits high discharge capacity of 655 mAh g?1 at 0.1 C (97% of theoretical capacity) and long cycling stability with a very small capacity decay of 0.008% per cycle over 1300 cycles at 1 C. The present report demonstrates significant progress in the development of high capacity cathode materials for long‐life Li batteries and flexible energy storage device.  相似文献   

14.
15.
One of the critical challenges to develop advanced lithium‐sulfur (Li‐S) batteries lies in exploring a high efficient stable sulfur cathode with robust conductive framework and high sulfur loading. Herein, a 3D flexible multifunctional hybrid is rationally constructed consisting of nitrogen‐doped carbon foam@CNTs decorated with ultrafine MgO nanoparticles for the use as advanced current collector. The dense carbon nanotubes uniformly wrapped on the carbon foam skeletons enhance the flexibility and build an interconnected conductive network for rapid ionic/electronic transport. In particular, a synergistic action of MgO nanoparticles and in situ N‐doping significantly suppresses the shuttling effect via enhanced chemisorption of lithium polysulfides. Owing to these merits, the as‐built electrode with an ultrahigh sulfur loading of 14.4 mg cm?2 manifests a high initial areal capacity of 10.4 mAh cm?2, still retains 8.8 mAh cm?2 (612 mAh g?1 in gravimetric capacity) over 50 cycles. The best cycling performance is achieved upon 800 cycles with an extremely low decay rate of 0.06% at 2 C. Furthermore, a flexible soft‐packaged Li‐S battery is readily assembled, which highlights stable electrochemical characteristics under bending and even folding. This cathode structural design may open up a potential avenue for practical application of high‐sulfur‐loading Li‐S batteries toward flexible energy‐storage devices.  相似文献   

16.
Graphene oxide (GO) has recently attracted a great deal of attention because of its heterogeneous chemical and electronic structures and its consequent exhibition of a wide range of potential applications, such as plastic electronics, optical materials, solar cells, and biosensors. However, its insulating nature also limits its application in some electronic and energy storage devices. In order to further widen the applications of GO, it is necessary to keep its inherent characteristics while improving its conductivity. Here, a novel leaf‐like GO with a carbon nanotube (CNT) midrib is developed using vapor growth carbon fiber (VGCF) through the conventional Hummers method. The CNT midrib provides a natural electron diffusion path for the leaf‐like GO, and therefore, this leaf‐like GO with a CNT midrib displays excellent performance when applied in energy storage devices, including Li‐O2 batteries, Li‐ion batteries, and supercapacitors.  相似文献   

17.
The pursuit of rechargeable batteries with high energy density has triggered enormous efforts in developing cathode materials for lithium/sodium (Li/Na)-ion batteries considering their extremely high specific capacity. Many materials are being researched for battery applications, and transition metal oxide materials with remarkable electrochemical performance stand out among numerous cathode candidates for next-generation battery. Notwithstanding the merits, daunting challenges persist in the quest for further battery developments targeting lower cost, longer lifespan, improved energy density and enhanced safety. This is, in part, because the voltage hysteresis between the charge and discharge cycles, is historically avoided in intercalation electrodes because of its association with structural disorder and electrochemical irreversibility. Given the great potential of these materials for next-generation batteries, a review of the recent understanding of voltage hysteresis is timely. This review presents the origin of their undesirable behaviors and materials design criteria to mitigate them by integrating various schools of thought. A large amount of progressive characterization techniques related to voltage hysteresis are summarized from the literature, along with the corresponding measurable range used in their determination. Finally, promising design trends with eliminated voltage hysteresis are tentatively proposed to revive these important cathode materials toward practical applications.  相似文献   

18.
Self‐standing electrodes are the key to realize flexible Li‐ion batteries. However, fabrication of self‐standing cathodes is still a major challenge. In this work, porous LiCoO2 nanosheet arrays are grown on Au‐coated stainless steel (Au/SS) substrates via a facile “hydrothermal lithiation” method using Co3O4 nanosheet arrays as the template followed by quick annealing in air. The binder‐free and self‐standing LiCoO2 nanosheet arrays represent the 3D cathode and exhibit superior rate capability and cycling stability. In specific, the LiCoO2 nanosheet array electrode can deliver a high reversible capacity of 104.6 mA h g?1 at 10 C rate and achieve a capacity retention of 81.8% at 0.1 C rate after 1000 cycles. By coupling with Li4Ti5O12 nanosheet arrays as anode, an all‐nanosheet array based LiCoO2//Li4Ti5O12 flexible Li‐ion battery is constructed. Benefiting from the 3D nanoarchitectures for both cathode and anode, the flexible LiCoO2//Li4Ti5O12 battery can deliver large specific reversible capacities of 130.7 mA h g?1 at 0.1 C rate and 85.3 mA h g?1 at 10 C rate (based on the weight of cathode material). The full cell device also exhibits good cycling stability with 80.5% capacity retention after 1000 cycles at 0.1 C rate, making it promising for the application in flexible Li‐ion batteries.  相似文献   

19.
20.
Nanosized mesoporous anatase TiO2 particles have important applications in high‐performance lithium ion batteries and efficient photocatalysis. In contrast to the conventional synthesis routes where various soft or hard templates are usually employed, the direct growth of uniform mesoporous anatase TiO2 nanospheres on graphene sheets by a template‐free self‐assembly process is presented. Compared to the conventional mesoporous anatase particles consisting of polycrystalline TiO2, the microstructure of obtained mesoporous anatase nanospheres on graphene sheets is single‐crystal‐like. The growth mechanism, lithium ion battery performance, and photocatalytic activity of the resultant mesoporous anatase TiO2 nanospheres/graphene composites are thoroughly investigated. In comparison to the reference TiO2, the composite shows substantial improvement in lithium specific capacity from 1 C to 50 C, and photocatalytic removing organic pollutant and hydrogen evolution. More strikingly, the specific capacity of the composite at the rate of 50 C is as high as 97 mA h g?1, 6 times higher than that of the reference TiO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号