首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fabricating theranostic nanoparticles combining multimode disease diagnosis and therapeutic has become an emerging approach for personal nanomedicine. However, the diagnostic capability, biocompatibility, and therapeutic efficiency of theranostic nanoplatforms limit their clinic widespread applications. Targeting to the theme of accurate diagnosis and effective therapy of cancer cells, a multifunctional nanoplatform of aptamer and polyethylene glycol (PEG) conjugated MoS2 nanosheets decorated with Cu1.8S nanoparticles (ATPMC) is developed. The ATPMC nanoplatform accomplishes photoluminescence imaging, photoacoustic imaging, and photothermal imaging for in vitro and in vivo tumor cells imaging diagnosis. Meanwhile, the ATPMC nanoplatform facilitates selective delivery of gene probe to detect intracellular microRNA aberrantly expressed in cancer cells and anticancer drug doxorubicin (DOX) for chemotherapy. Moreover, the synergistic interaction of MoS2 and Cu1.8S renders the ATPMC nanoplatform with superb photothermal conversion efficiency. The ATPMC nanoplatform loaded with DOX displays near‐infrared laser‐induced programmed chemotherapy and advanced photothermal therapy, and the targeted chemo‐photothermal therapy presents excellent antitumor efficiency.  相似文献   

2.
Copper chalcogenides have been demonstrated to be a promising photothermal agent due to their high photothermal conversion efficiency, synthetic simplicity, and low cost. However, the hydrophobic and less biocompatible characteristics associated with their synthetic processes hamper widely biological applications. An alternative strategy for improving hydrophilicity and biocompatibility is to coat the copper chalcogenide nanomaterials with silica shell. Herein, the rational preparation design results in successful coating mesoporous silica (mSiO2) on as‐synthesized Cu9S5 nanocrystals, forming Cu9S5@mSiO2‐PEG core‐shell nanostructures. As‐prepared Cu9S5@mSiO2‐PEG core‐shell nanostructures show low cytotoxicity and excellent blood compatibility, and are effectively employed for photothermal ablation of cancer cells and infrared thermal imaging. Moreover, anticancer drug of doxorubicin (DOX)‐loaded Cu9S5@mSiO2‐PEG core‐shell nanostructures show pH sensitive release profile and are therefore beneficial to delivery of DOX into cancer cells for chemotherapy. Importantly, the combination of photothermal‐ and chemotherapies demonstrates better effects of therapy on cancer treatment than individual therapy approaches in vitro and in vivo.  相似文献   

3.
The quantitative detection of microRNA (miR) and multimode‐imaging‐induced photothermal therapy in vivo have become the focus of much attention. Platinum (Pt) decorated gold nanorods (AuNR‐Pt) and Ag2S core–satellite (AuNR‐Pt@Ag2S) multifunctional nanostructures are fabricated to quantify intracellular miRs (miR‐21), near‐infrared fluorescence cell quantitative imaging, and tumor ablation in vivo. When combined with miR‐21, the nanoassembly displays significant fluorescence intensity in the second window of the near‐infrared region (1000–1700 nm) after 808 nm excitation. The Ag2S fluorescence intensity has a good linear relationship with the amount of intracellular miR in the range of 0.054–20.45 amol ngRNA ?1 and a limit of detection of 0.0082 amol ngRNA ?1. The nanoassembly is also used to develop multimodal bioimaging, including near‐infrared, X‐ray computed tomographic, and photoacoustic imaging in HeLa‐tumor‐bearing mice. Moreover, the tumors are completely eliminated by the high photothermal capacity of the AuNR‐Pt@Ag2S assembly. This nanoassembly provides a multifunctional nanoplatform for the ultrasensitive detection of miRs and tumor diagnosis and therapy in vivo.  相似文献   

4.
Near‐infrared (NIR)‐absorbing metal‐based nanomaterials have shown tremendous potential for cancer therapy, given their facile and controllable synthesis, efficient photothermal conversion, capability of spatiotemporal‐controlled drug delivery, and intrinsic imaging function. Tantalum (Ta) is among the most biocompatible metals and arouses negligible adverse biological responses in either oxidized or reduced forms, and thus Ta‐derived nanomaterials represent promising candidates for biomedical applications. However, Ta‐based nanomaterials by themselves have not been explored for NIR‐mediated photothermal ablation therapy. In this work, an innovative Ta‐based multifunctional nanoplatform composed of biocompatible tantalum sulfide (TaS2) nanosheets (NSs) is reported for simultaneous NIR hyperthermia, drug delivery, and computed tomography (CT) imaging. The TaS2 NSs exhibit multiple unique features including (i) efficient NIR light‐to‐heat conversion with a high photothermal conversion efficiency of 39%, (ii) high drug loading (177% by weight), (iii) controlled drug release triggered by NIR light and moderate acidic pH, (iv) high tumor accumulation via heat‐enhanced tumor vascular permeability, (v) complete tumor ablation and negligible side effects, and (vi) comparable CT imaging contrast efficiency to the widely clinically used agent iobitridol. It is expected that this multifunctional NS platform can serve as a promising candidate for imaging‐guided cancer therapy and selection of cancer patients with high tumor accumulation.  相似文献   

5.
A novel multifunctional drug‐delivery platform is developed based on cholesteryl succinyl silane (CSS) nanomicelles loaded with doxorubicin, Fe3O4 magnetic nanoparticles, and gold nanoshells (CDF‐Au‐shell nanomicelles) to combine magnetic resonance (MR) imaging, magnetic‐targeted drug delivery, light‐triggered drug release, and photothermal therapy. The nanomicelles show improved drug‐encapsulation efficiency and loading level, and a good response to magnetic fields, even after the formation of the gold nanoshell. An enhancement for T2‐weighted MR imaging is observed for the CDF‐Au‐shell nanomicelles. These nanomicelles display surface plasmon absorbance in the near‐infrared (NIR) region, thus exhibiting an NIR (808 nm)‐induced temperature elevation and an NIR light‐triggered and stepwise release behavior of doxorubicin due to the unique characteristics of the CSS nanomicelles. Photothermal cytotoxicity in vitro confirms that the CDF‐Au‐shell nanomicelles cause cell death through photothermal effects only under NIR laser irradiation. Cancer cells incubated with CDF‐Au‐shell nanomicelles show a significant decrease in cell viability only in the presence of both NIR irradiation and a magnetic field, which is attributed to the synergetic effects of the magnetic‐field‐guided drug delivery and the photothermal therapy. Therefore, such multicomponent nanomicelles can be developed as a smart and promising nanosystem that integrates multiple capabilities for effective cancer diagnosis and therapy.  相似文献   

6.
The ideal theranostic nanoplatform for tumors is a single nanoparticle that has a single semiconductor or metal component and contains all multimodel imaging and therapy abilities. The design and preparation of such a nanoparticle remains a serious challenge. Here, with FeS2 as a model of a semiconductor, the tuning of vacancy concentrations for obtaining “all‐in‐one” type FeS2 nanoparticles is reported. FeS2 nanoparticles with size of ≈30 nm have decreased photoabsorption intensity from the visible to near‐infrared (NIR) region, due to a low S vacancy concentration. By tuning their shape/size and then enhancing the S vacancy concentration, the photoabsorption intensity of FeS2 nanoparticles with size of ≈350 nm (FeS2‐350) goes up with the increase of the wavelength from 550 to 950 nm, conferring the high NIR photothermal effect for thermal imaging. Furthermore, this nanoparticle has excellent magnetic properties for T2‐weighted magnetic resonance imaging (MRI). Subsequently, FeS2‐350 phosphate buffer saline (PBS) dispersion is injected into the tumor‐bearing mice. Under the irradiation of 915‐nm laser, the tumor can be ablated and the metastasis lesions in liver suffer significant inhibition. Therefore, FeS2‐350 has great potential to be used as novel “all‐in‐one” multifunctional theranostic nanoagents for MRI and NIR dual‐modal imaging guided NIR‐photothermal ablation therapy (PAT) of tumors.  相似文献   

7.
A novel nanoplatform based on tungsten oxide (W18O49, WO) and indocyanine green (ICG) for dual‐modal photothermal therapy (PTT) and photodynamic therapy (PDT) has been successfully constructed. In this design, the hierarchical unique nanorod‐bundled W18O49 nanostructures play roles in being not only as an efficient photothermal agent for PTT but also as a potential nanovehicle for ICG molecules via electrostatic adsorption after modified with trimethylammonium groups on their surface. It is found that the ability of ICG to produce cytotoxic reactive oxygen species for PDT is well maintained after being attached on the WO, thus the as‐obtained WO@ICG can achieve a synergistic effect of combined PTT and PDT under single 808 nm near‐infrared (NIR) laser excitation. Notably, compared with PTT or PDT alone, the enhanced HeLa cells lethality of the 808 nm laser triggered dual‐modal therapy is observed. The in vivo animal experiments have shown that WO@ICG has effective solid tumor ablation effect with 808 nm NIR light irradiation, revealing the potential of these nanocomposites as a NIR‐mediated dual‐modal therapeutic platform for cancer treatment.  相似文献   

8.
Near infrared light, especially the second near‐infrared light (NIR II) biowindows with deep penetration and high sensitivity are widely used for optical diagnosis and phototherapy. Here, a novel kind of 2D SnTe@MnO2‐SP nanosheet (NS)‐based nanoplatform is developed for cancer theranostics with NIR II‐mediated precise optical imaging and effective photothermal ablation of mouse xenografted tumors. The 2D SnTe@MnO2‐SP NSs are fabricated via a facile method combining ball‐milling and liquid exfoliation for synthesis of SnTe NSs, and surface coating MnO2 shell and soybean phospholipid (SP). The ultrathin SnTe@MnO2‐SP NSs reveal notably high photothermal conversion efficiency (38.2% in NIR I and 43.9% in NIR II). The SnTe@MnO2‐SP NSs inherently feature tumor microenvironment (TME)‐responsive biodegradability, and the main metabolite TeO32? shows great antitumor effect, coupling synergetic chemotherapy for cancer. Moreover, the SnTe@MnO2‐SP NSs also exhibit great potential for fluorescence, photoacoustic (PA), and photothermal imaging agents in the NIR II biowindow with much higher resolution and sensitivity. This is the first report, as far as is known, with such an inorganic nanoagent setting fluorescence/PA/photothermal imaging and photothermal therapy in NIR II biowindow and TME‐responsive biodegradability rolled into one, which provide insight into the clinical potential for cancer theranostics.  相似文献   

9.
The combination of biocompatible superparamagnetic and photoluminescent nanoparticles (NPs) is intensively studied as highly promising multifunctional (magnetic confinement and targeting, imaging, etc.) tools in biomedical applications. However, most of these hybrid NPs exhibit low signal contrast and shallow tissue penetration for optical imaging due to tissue‐induced optical extinction and autofluorescence, since in many cases, their photoluminescent components emit in the visible spectral range. Yet, the search for multifunctional NPs suitable for high photoluminescence signal‐to‐noise ratio, deep‐tissue imaging is still ongoing. Herein, a biocompatible core/shell/shell sandwich structured Fe3O4@SiO2@NaYF4:Nd3+ nanoplatform possessing excellent superparamagnetic and near‐infrared (excitation) to near‐infrared (emission), i.e., NIR‐to‐NIR photoluminescence properties is developed. They can be rapidly magnetically confined, allowing the NIR photoluminescence signal to be detected through a tissue as thick as 13 mm, accompanied by high T2 relaxivity in magnetic resonance imaging. The fact that both the excitation and emission wavelengths of these NPs are in the optically transparent biological windows, along with excellent photostability, fast magnetic response, significant T2‐contrast enhancement, and negligible cytotoxicity, makes them extremely promising for use in high‐resolution, deep‐tissue dual‐mode (optical and magnetic resonance) in vivo imaging and magnetic‐driven applications.  相似文献   

10.
High‐security nanoplatform with enhanced therapy compliance is extremely promising for tumor. Herein, using a simple and high‐efficient self‐assembly method, a novel active‐targeting nanocluster probe, namely, Ag2S/chlorin e6 (Ce6)/DOX@DSPE‐mPEG2000‐folate (ACD‐FA) is synthesized. Experiments indicate that ACD‐FA is capable of specifically labeling tumor and guiding targeting ablation of the tumor via precise positioning from fluorescence and photoacoustic imaging. Importantly, the probe is endowed with a photodynamic “on‐off” effect, that is, Ag2S could effectively quench the fluorescence of chlorin e6 (89.5%) and inhibit release of 1O2 (92.7%), which is conducive to avoid unwanted phototoxicity during transhipment in the body, and only after nanocluster endocytosed by tumor cells could release Ce6 to produce 1O2. Moreover, ACD‐FA also achieves excellent acid‐responsive drug release, and exhibits eminent chemo‐photothermal and photodynamic effects upon laser irradiation. Compared with single or two treatment combining modalities, ACD‐FA could provide the best cancer therapeutic effect with a relatively low dose, because it made the most of combined effect from chemo‐photothermal and controlled photodynamic therapy, and significantly improves the drug compliance. Besides, the active‐targeting nanocluster notably reduces nonspecific toxicity of both doxorubicin and chlorin e6. Together, this study demonstrates the potency of a newly designed nanocluster for nonradioactive concomitant therapy with precise tumor‐targeting capability.  相似文献   

11.
The poly(maleic anhydride‐alt‐1‐octadecene‐poly(ethylene glycol)) (C18PMH‐PEG) modified single‐walled carbon nanohorns (SWNHs) are designed with high stability and biocompatibility. The as‐prepared SWNHs/C18PMH‐PEG not only can serve as an excellent photothermal agent but also can be used as a promising photoacoustic imaging (PAI) agent both in vitro and in vivo due to its strong absorption in the near infrared (NIR) region. The PAI result reveals that the SWNHs/C18PMH‐PEG possesses ultra long blood circulation time and can significantly be accumulated at the tumor site through the enhanced penetration and retention (EPR) effect. The maximum accumulation of SWNHs/C18PMH‐PEG at tumor site could be achieved at the time point of 24 h after intravenous injection, which is considered to be the optimal time for the 808 nm laser treatment. The subsequent photothermal ablation of tumors can be achieved without triggering any side effects. Therefore, a PAI guided PTT platform based on SWNHs is proposed and highlights the potential theranostic application for biomedical uses.  相似文献   

12.
The integration of efficient imaging for diagnosis and synergistic tumor therapy into a single‐component nanoplatform is much promising for high efficacy tumor treatment but still in a great challenge. Herein, a smart and versatile nanotheranostic platform based on hollow mesoporous Prussian blue nanoparticles (HMPBs) with perfluoropentane (PFP) and doxorubicin (DOX) inside, has been designed, for the first time, to achieve the distinct in vivo synergistic chemo‐thermal tumor therapy and synchronous diagnosis and monitoring by ultrasound (US)/photoacoustic (PA) dual mode imaging. The prepared HMPBs show excellent photothermal conversion properties with large molar extinction coefficient (≈1.2 × 1011m ?1 cm?1) and extremely high photothermal conversion efficiency (41.4%). Such a novel theranostic nanoplatform is expected to overcome the inevitable tumor recurrence and metastasis resulting from the inhomogeneous ablation of single thermal therapy, which will find a promising prospect in the application of noninvasive cancer therapy.  相似文献   

13.
A facile method for preparing highly self‐doped Cu2‐xE (E = S, Se) nanocrystals (NCs) with controlled size in the range of 2.8–13.5 nm and 7.2–16.5 nm, for Cu2‐xS and Cu2‐xSe, respectively, is demonstrated. Strong near‐infrared localized surface plasmon resonance absorption is observed in the NCs, indicating that the as‐prepared particles are heavily p‐doped. The NIR plasmonic absorption is tuned by varying the amount of oleic acid used in synthesis. This effect is attributed to a reduction in the number of free carriers through surface interaction of the deprotonated carboxyl functional group of oleic acid with the NCs. This approach provides a new pathway to control both the size and the cationic deficiency of Cu2‐xSe and Cu2‐xS NCs. The high electrical conductivity exhibited by these NPs in metal‐semiconductor‐metal thin film devices shows promise for applications in printable field‐effect transistors and microelectronic devices.  相似文献   

14.
Ternary I‐III‐VI2 nanocrystals (NCs), such as CuInS2, are receiving attention as heavy‐metals‐free materials for solar cells, luminescent solar concentrators (LSCs), LEDs, and bio‐imaging. The origin of the optical properties of CuInS2 NCs are however not fully understood. A recent theoretical model suggests that their characteristic Stokes‐shifted and long‐lived luminescence arises from the structure of the valence band (VB) and predicts distinctive optical behaviours in defect‐free NCs: the quadratic dependence of the radiative decay rate and the Stokes shift on the NC radius. If confirmed, this would have crucial implications for LSCs as the solar spectral coverage ensured by low‐bandgap NCs would be accompanied by increased re‐absorption losses. Here, by studying stoichiometric CuInS2 NCs, it is revealed for the first time the spectroscopic signatures predicted for the free band‐edge exciton, thus supporting the VB‐structure model. At very low temperatures, the NCs also show dark‐state emission likely originating from enhanced electron‐hole spin interaction. The impact of the observed optical behaviours on LSCs is evaluated by Monte Carlo ray‐tracing simulations. Based on the emerging device design guidelines, optical‐grade large‐area (30×30 cm2) LSCs with optical power efficiency (OPE) as high as 6.8% are fabricated, corresponding to the highest value reported to date for large‐area devices.  相似文献   

15.
The explosion of emerging high‐performance 2D MXenes in theranostic nanomedicine is still at the preliminary stage. Despite tremendous efforts devoted to photonic tumor hyperthermia, current photothermal‐conversion nanoagents still suffer from critical issues preventing further clinical translation such as low biodegradability. Here, for the first time, the construction of novel 2D molybdenum carbide (Mo2C) MXenes for photonic tumor hyperthermia is reported. The structure of both bulk Mo2Ga2C ceramic and Mo2C MXene is fully revealed. Especially, computational simulation, as a novel strategy and a powerful tool for photonic‐performance prediction, is employed to reveal that Mo2C MXene is featured with intense near‐infrared (NIR) absorption, covering the first and the second biological transparency window (NIR I and II). After further surface engineering with polyvinyl alcohol (PVA), Mo2C‐PVA nanoflakes exhibit high biocompatibility and fast degradability. Importantly, it is experimentally corroborated that Mo2C‐PVA nanoflakes possess intriguing broad absorption band spanning NIR in both the I and II regions, and desirable photothermal‐conversion efficiency (24.5% for NIR I and 43.3% for NIR II). This study not only broadens the nanomedical applications of MXene by fabricating novel material members (Mo2C), but also provides the paradigm of inorganic multifunctional biomedical nanoplatform with desirable biodegradability and high therapeutic performance.  相似文献   

16.
The insufficient blood flow and oxygen supply in solid tumor cause hypoxia, which leads to low sensitivity of tumorous cells and thus causing poor treatment outcome. Here, mesoporous manganese dioxide (mMnO2) with ultrasensitive biodegradability in a tumor microenvironment (TME) is grown on upconversion photodynamic nanoparticles for not only TME‐enhanced bioimaging and drug release, but also for relieving tumor hypoxia, thereby markedly improving photodynamic therapy (PDT). In this nanoplatform, mesoporous silica coated upconversion nanoparticles (UCNPs@mSiO2) with covalently loaded chlorin e6 are obtained as near‐infrared light mediated PDT agents, and then a mMnO2 shell is grown via a facile ultrasonic way. Because of its unique mesoporous structure, the obtained nanoplatform postmodified with polyethylene glycol can load the chemotherapeutic drug of doxorubicin (DOX). When used for antitumor application, the mMnO2 degrades rapidly within the TME, releasing Mn2+ ions, which couple with trimodal (upconversion luminescence, computed tomography (CT), and magnetic resonance imaging) imaging of UCNPs to perform a self‐enhanced imaging. Significantly, the degradation of mMnO2 shell brings an efficient DOX release, and relieve tumor hypoxia by simultaneously inducing decomposition of tumor endogenous H2O2 and reduction of glutathione, thus achieving a highly potent chemo‐photodynamic therapy.  相似文献   

17.
To access smart optical theragnosis for cancer, an easily processable heterocyclic conjugated polymer (poly(sodium3‐((3‐methyl‐3,4‐dihydro‐2H‐thieno[3,4‐b][1,4]dioxepin‐3‐yl)methoxy)propane‐1‐sulfonate), PPDS) nanoassembly is fabricated by a surfactant‐free one‐step process, without the laborious ordinary multicoating process. The conjugated nanoassembly, with a self‐doped structure, provides strong absorbance in the near‐infrared (NIR) range even in a neutral pH medium and exhibits excellent stability (>six months). In addition, the prepared PPDS nanoassembly shows a high photothermal conversion efficiency of 31.4% in organic photothermal nanoparticles. In particular, the PPDS nanoassembly is stably suspended in the biological medium without any additives. Through a simple immobilization with the anti‐CD44 antibody, the prepared biomarker‐targetable PPDS nanoassembly demonstrates specific targeting toward CD44 (expressed in stem‐like cancer cells), allowing NIR absorbance imaging and the efficient targeted photothermal damaging of CD44‐expressing cancer cells, from in vitro 3D mammospheres (similar to the practical structure of tumor in the body) to in vivo xenograft mice tumor models (breast cancer and fibrosarcoma). In this study, the most simplified preparation method is for this organic conjugated polymer‐based nanoassembly by a molecular approach is reported, and demonstrated as a highly promising optical nanoagent for optical cancer theragnosis.  相似文献   

18.
A photothermal bacterium (PTB) is reported for tumor‐targeted photothermal therapy (PTT) by using facultative anaerobic bacterium Shewanella oneidensis MR‐1 (S. oneidensis MR‐1) to biomineralize palladium nanoparticles (Pd NPs) on its surface without affecting bacterial activity. It is found that PTB possesses superior photothermal property in near infrared (NIR) regions, as well as preferential tumor‐targeting capacity. Zeolitic imidazole frameworks‐90 (ZIF‐90) encapsulating photosensitizer methylene blue (MB) are hybridized on the surface of living PTB to further enhance PTT efficacy. MB‐encapsulated ZIF‐90 (ZIF‐90/MB) can selectively release MB at mitochondria and cause mitochondrial dysfunction by producing singlet oxygen (1O2) under light illumination. Mitochondrial dysfunction further contributes to adenosine triphosphate (ATP) synthesis inhibition and heat shock proteins (HSPs) down‐regulated expression. The PTB‐based therapeutic platform of PTB@ZIF‐90/MB demonstrated here will find great potential to overcome the challenges of tumor targeting and tumor heat tolerance in PTT.  相似文献   

19.
Local hypoxia in tumors results in undesirable impediments for the efficiencies of oxygen‐dependent chemical and photodynamic therapy (PDT). Herein, a versatile oxygen‐generating and pH‐responsive nanoplatform is developed by loading MnO2 nanodots onto the nanosystem that encapsulates g‐C3N4 and doxorubicin hydrochloride to overcome the hypoxia‐caused resistance in cancer therapy. The loaded MnO2 nanodots can react with endogenous acidic H2O2 to elevate the dissolved oxygen concentration, leading to considerably enhanced cancer therapy efficacy. As such, the as‐prepared nanoplatform with excellent dispersibility and satisfactory biocompatibility can sustainably increase the oxygen concentration and rapidly release the encapsulated drugs in acid H2O2 environment. In vitro cytotoxicity experiments show a higher therapy effect by the designed nanoplatform, when compared to therapy without MnO2 nanodots under hypoxia condition, or chemical and photodynamic therapy alone with the presence of MnO2 nanodots. In vivo experiments also demonstrate that 4T1 tumors can be very efficiently eliminated by the designed nanoplatform under light irradiation. These results highlight that the MnO2 nanodots‐based nanoplatform is promising for elevating the oxygen level in tumor microenvironments to overcome hypoxia limitations for high‐performance cancer therapy.  相似文献   

20.
Fabrication of ultrasmall single‐component omnipotent nanotheranostic agents integrated with multimodal imaging and multiple therapeutic functions becomes more and more practically relevant but challenging. In this article, sub 10 nm Bi2S3 biocompatible particles are prepared through a bovine serum albumin (BSA)‐mediated biomineralization process under ambient aqueous conditions. Owing to the ultrasmall size and colloidal stability, the resulting nanoparticles (NPs) present outstanding blood circulation behavior and excellent tumor targeting ability. Toward theranostic applications, the biosafety profile is carefully investigated. In addition, photothermal conversion is characterized for both photoacoustic imaging and photothermal treatment of cancers. Upon radiolabeling, the performance of the resulting particles for SPECT/CT imaging in vivo is also carried out. Additionally, different combinations of treatments are applied for evaluating the performance of the as‐prepared Bi2S3 NPs in photothermal‐ and radiotherapy of tumors. Due to the remarkable photothermal conversion efficiency and large X‐ray attenuation coefficient, the implanted tumors are completely eradicated through combined therapies, which highlights the potential of BSA‐capped Bi2S3 NPs as a novel multifunctional nanotheranostic agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号