首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermoelectric devices can directly convert thermal energy to electricity or vice versa with the efficiency being determined by the materials’ dimensionless figure of merit (ZT). Since the revival of interests in the last decades, substantial achievements have been reached in search of high‐performance thermoelectric materials, especially in the high temperature regime. In the near‐room‐temperature regime, MgAgSb‐based materials are recently obtained with ZT ≈ 0.9 at 300 K and ≈1.4 at 525 K, as well as a record high energy conversion efficiency of 8.5%. However, the underlying mechanism responsible for the performance in this family of materials has been poorly understood. Here, based on structure refinements, scanning transmission electron microscopy (STEM), NMR experiments, and density function theory (DFT) calculations, unique silver and magnesium ion migrations in α‐MgAg0.97Sb0.99 are disclosed. It is revealed that the local atomic disorders induced by concurrent ion migrations are the major origin of the low thermal conductivity and play an important role in the good ZT in MgAgSb‐based materials.  相似文献   

2.
The reduction of thermal conductivity, and a comprehensive understanding of the microstructural constituents that cause this reduction, represent some of the important challenges for the further development of thermoelectric materials with improved figure of merit. Model PbTe‐based thermoelectric materials that exhibit very low lattice thermal conductivity have been chosen for this microstructure–thermal conductivity correlation study. The nominal PbTe0.7S0.3 composition spinodally decomposes into two phases: PbTe and PbS. Orderly misfit dislocations, incomplete relaxed strain, and structure‐modulated contrast rather than composition‐modulated contrast are observed at the boundaries between the two phases. Furthermore, the samples also contain regularly shaped nanometer‐scale precipitates. The theoretical calculations of the lattice thermal conductivity of the PbTe0.7S0.3 material, based on transmission electron microscopy observations, closely aligns with experimental measurements of the thermal conductivity of a very low value, ~0.8 W m?1 K?1 at room temperature, approximately 35% and 30% of the value of the lattice thermal conductivity of either PbTe and PbS, respectively. It is shown that phase boundaries, interfacial dislocations, and nanometer‐scale precipitates play an important role in enhancing phonon scattering and, therefore, in reducing the lattice thermal conductivity.  相似文献   

3.
BaSi2 is a potential thermoelectric material because of its very low thermal conductivity. Using the full-potential linearized augmented plane-wave method and semiclassical Boltzmann theory, thermoelectric transport properties of BaSi2 have been investigated. The calculations show that the thermoelectric properties can be remarkably improved by optimizing the carrier concentration. The linear response method within the framework of density functional theory was employed to investigate the underlying physics of heat transport. There are rather flat optical dispersion curves and low frequency of acoustic phonon modes in the phonon band structure of BaSi2. The low-lying optical phonon branch at the Γ point of the Brillouin zone (BZ) corresponds to rigid-unit vibration of the Si tetrahedron. The rigid-unit vibration mode confines the acoustic phonon modes and scatters the heat-carrying acoustic modes, leading to the low lattice thermal conductivity.  相似文献   

4.
Phase immiscibility in PbTe–based thermoelectric materials is an effective means of top‐down synthesis of nanostructured composites exhibiting low lattice thermal conductivities. PbTe1‐x Sx thermoelectric materials can be synthesized as metastable solid solution alloys through rapid quenching. Subsequent post‐annealing induces phase separation at the nanometer scale, producing nanostructures that increase phonon scattering and reduce lattice thermal conductivity. However, there has yet to be any study investigating in detail the local chemical structure of both the solid solution and nanostructured variants of this material system. Herein, quenched and annealed (i.e., solid solution and phase‐separated) samples of PbTe–PbS are analyzed by in situ high‐resolution synchrotron powder X‐ray diffraction, solid‐state 125Te nuclear magnetic resonance (NMR), and infrared (IR) spectroscopy analysis. For high concentrations of PbS in PbTe, e.g., x >16%, NMR and IR analyses reveal that rapidly quenched samples exhibit incipient phase separation that is not detected by state‐of‐the‐art synchrotron X‐ray diffraction, providing an example of a PbTe thermoelectric “alloy” that is in fact phase inhomogeneous. Thermally‐induced PbS phase separation in PbTe–PbS occurs close to 200 °C for all compositions studied, and the solubility of the PbS phase in PbTe at elevated temperatures >500 °C is reported. The findings of this study suggest that there may be a large number of thermoelectric alloy systems that are phase inhomogeneous or nanostructured despite adherence to Vegard's Law of alloys, highlighting the importance of careful chemical characterization to differentiate between thermoelectric alloys and composites.  相似文献   

5.
This work studies the thermal conductivity and phonon scattering processes in a series of n‐type lead telluride‐lead selenide (PbTe–PbSe) nanostructured thin films grown by atomic layer deposition (ALD). The ALD growth of the PbTe–PbSe samples in this work results in nonepitaxial films grown directly on native oxide/Si substrates, where the Volmer–Weber mode of growth promotes grains with a preferred columnar orientation. The ALD growth of these lead‐rich PbTe, PbSe, and PbTe–PbSe thin films results in secondary oxide phases, along with an increase microstructural quality with increased film thickness. The compositional variation and resulting point and planar defects in the PbTe–PbSe nanostructures give rise to additional phonon scattering events that reduce the thermal conductivity below that of the corresponding ALD‐grown control PbTe and PbSe films. Temperature‐dependent thermal conductivity measurements show that the phonon scattering in these ALD‐grown PbTe–PbSe nanostructured materials, along with ALD‐grown PbTe and PbSe thin films, are driven by extrinsic defect scattering processes as opposed to phonon–phonon scattering processes intrinsic to the PbTe or PbSe phonon spectra. The implication of this work is that polycrystalline, nanostructured ALD composites of thermoelectric PbTe–PbSe films are effective in reducing the phonon thermal conductivity, and represent a pathway for further improvement of the figure of merit (ZT), enhancing their thermoelectric application potential.  相似文献   

6.
Contrary to the conventional belief that the consideration for topological insulators (TIs) as potential thermoelectrics is due to their excellent electrical properties benefiting from the topological surface states, this work shows that the 3D weak TIs, formed by alternating stacks of quantum spin Hall layers and normal insulator (NI) layers, can also be decent thermoelectrics because of their focus on minimum thermal conductivity. The minimum lattice thermal conductivity is experimentally confirmed in Bi14Rh3I9 and theoretically predicted for Bi2TeI at room temperature. It is revealed that the topologically “trivial” NI layers play a surprisingly critical role in hindering phonon propagation. The weak bonding in the NI layers gives rise to significantly low sound velocity, and the localized low‐frequency vibrations of the NI layers cause strong acoustic–optical interactions and lattice anharmonicity. All these features are favorable for the realization of exceptionally low lattice thermal conductivity, and therefore present remarkable opportunities for developing high‐performance thermoelectrics in weak TIs.  相似文献   

7.
Argyrodites with a general chemical formula of A8BC6 are known for complex phase transitions, ultralow lattice thermal conductivity, and mixed electronic and ionic conduction. The coexistence of ionic conduction and promising thermoelectric performance have recently been reported in selenide and telluride argyrodites, but scarcely in sulfide argyrodites. Here, the thermoelectric properties of Ag8Sn(S1?xSex)6 are reported. Specifically, Ag8SnS6 exhibits intrinsically ultralow lattice thermal conductivities of 0.61–0.31 W m?1 K?1 over the whole temperature range from 32 to 773 K due to distorted local crystal structure, relatively weak chemical bonding, rattler‐like Ag atoms, low‐lying optical modes, and dynamic disorder of Ag ions at high temperatures. Se doping shifts the orthorhombic–cubic phase transition from 457 K at x = 0 to 430 K at x = 0.10, thereby expanding the temperature range of the thermoelectrically favored cubic phase. A figure of merit zT value ≈ 0.80 is achieved at 773 K in Ag8Sn(S1?xSex)6 (x = 0.03), the highest zT value reported in sulfide argyrodites. These results fill a knowledge gap of the thermoelectric study of argyrodites and contribute to a comprehensive understanding of the chemical bonding, lattice dynamics, and thermal transport of argyrodites.  相似文献   

8.
Thermoelectrics are being rapidly developed for waste heat recovery applications, particularly in automobiles, to reduce carbon emissions. PbTe‐based materials with small (<20 nm) nanoscale features have been previously shown to have high thermoelectric figure‐of‐merit, zT, largely arising from low lattice thermal conductivity particularly at low temperatures. Separating the various phonon scattering mechanisms and the electronic contribution to the thermal conductivity is a serious challenge to understanding, and further optimizing, these nanocomposites. Here we show that relatively large nanometer‐scale (50–200 nm) Ag2Te precipitates in PbTe can be controlled according to the equilibrium phase diagram and these materials show intrinsic semiconductor behavior with high electrical resistivity, enabling direct measurement of the phonon thermal conductivity. This study provides direct evidence that even large nanometer‐scale microstructures reduce thermal conductivity below that of a macro‐scale composite of saturated alloys with Kapitza‐type interfacial thermal resistance at the same overall composition. Carrier concentration control is achieved with lanthanum doping, enabling independent control of the electronic properties and microstructure. These materials exhibit lattice thermal conductivity which approaches the theoretical minimum above ~650 K, even lower than that found with small nanoparticles. Optimally La‐doped n‐type PbTe‐Ag2Te nanocomposites exhibit zT > 1.5 at 775 K.  相似文献   

9.
Transmission electron microscopy studies show that a PbTe‐BaTe bulk thermoelectric system represents the coexistence of solid solution and nanoscale BaTe precipitates. The observed significant reduction in the thermal conductivity is attributed to the enhanced phonon scattering by the combination of substitutional point defects in the solid solution and the presence of high spatial density of nanoscale precipitates. In order to differentiate the role of nanoscale precipitates and point defects in reducing lattice thermal conductivity, a modified Callaway model is proposed, which highlights the contribution of point defect scattering due to solid solution in addition to that of other relevant microstructural constituents. Calculations indicate that in addition to a 60% reduction in lattice thermal conductivity by nanostructures, point defects are responsible for about 20% more reduction and the remaining reduction is contributed by the collective of dislocation and strain scattering. These results underscore the need for tailoring integrated length‐scales for enhanced heat‐carrying phonon scattering in high performance thermoelectrics.  相似文献   

10.
Recently a significant figure‐of‐merit (ZT) improvement in the most‐studied existing thermoelectric materials has been achieved by creating nanograins and nanostructures in the grains using the combination of high‐energy ball milling and a direct‐current‐induced hot‐press process. Thermoelectric transport measurements, coupled with microstructure studies and theoretical modeling, show that the ZT improvement is the result of low lattice thermal conductivity due to the increased phonon scattering by grain boundaries and structural defects. In this article, the synthesis process and the relationship between the microstructures and the thermoelectric properties of the nanostructured thermoelectric bulk materials with an enhanced ZT value are reviewed. It is expected that the nanostructured materials described here will be useful for a variety of applications such as waste heat recovery, solar energy conversion, and environmentally friendly refrigeration.  相似文献   

11.
Heavy doping changes an intrinsic semiconductor into a metallic conductor by the introduction of impurity states. However, Ga impurities in thermoelectric skutterudite CoSb3 with lattice voids provides an example to the contrary. Because of dual‐site occupancy of the single Ga impurity charge‐compensated compound defects are formed. By combining first‐principle calculations and experiments, we show that Ga atoms occupy both the void and Sb sites in CoSb3 and couple with each other. The donated electrons from the void‐filling Ga (GaVF) saturate the dangling bonds from the Sb‐substitutional Ga (GaSb). The stabilization of Ga impurity as a compound defect extends the region of skutterudite phase stability toward Ga0.15Co4Sb11.95 whereas the solid–solution region in other directions of the ternary phase diagram is much smaller. A proposed ternary phase diagram for Ga‐Co‐Sb is given. This compensated defect complex leads to a nearly intrinsic semiconductor with heavy Ga doping in CoSb3 and a much reduced lattice thermal conductivity (κL) which can also be attributed to the effective scattering of both the low‐ and high‐frequency lattice phonons by the dual‐site occupant Ga impurities. Such a system maintains a low carrier concentration and therefore high thermopower, and the thermoelectric figure of merit quickly increases to 0.7 at a Ga doping content as low as 0.1 per Co4Sb12 and low carrier concentrations on the order of 1019 cm?3.  相似文献   

12.
Sb‐doped and GeTe‐alloyed n‐type thermoelectric materials that show an excellent figure of merit ZT in the intermediate temperature range (400–800 K) are reported. The synergistic effect of favorable changes to the band structure resulting in high Seebeck coefficient and enhanced phonon scattering by point defects and nanoscale precipitates resulting in reduction of thermal conductivity are demonstrated. The samples can be tuned as single‐phase solid solution (SS) or two‐phase system with nanoscale precipitates (Nano) based on the annealing processes. The GeTe alloying results in band structure modification by widening the bandgap and increasing the density‐of‐states effective mass of PbTe, resulting in significantly enhanced Seebeck coefficients. The nanoscale precipitates can improve the power factor in the low temperature range and further reduce the lattice thermal conductivity (κlat). Specifically, the Seebeck coefficient of Pb0.988Sb0.012Te–13%GeTe–Nano approaches ?280 µV K?1 at 673 K with a low κlat of 0.56 W m?1 K?1 at 573 K. Consequently, a peak ZT value of 1.38 is achieved at 623 K. Moreover, a high average ZTavg value of ≈1.04 is obtained in the temperature range from 300 to 773 K for n‐type Pb0.988Sb0.012Te–13%GeTe–Nano.  相似文献   

13.
Thermoelectric materials with high figure of merit, which requires large Seebeck coefficient, large electrical conductivity, and low thermal conductivity, are of great importance in solid-state cooling and power generation. Solid-solution formation is one effective method to achieve low thermal conductivity by phonon scattering due to mass and strain field fluctuations. This type of scattering is maximized in structures containing vacancies. The thermoelectric properties of Ga2Te3-GaSb vacancy compounds were studied in this work. We find that the lattice thermal conductivity is reduced by over an order of magnitude with the addition of only very moderate amounts of Ga2Te3. Additionally, both the carrier type and concentration can be modified. While the vacancy structure induced by Ga2Te3 addition to GaSb can effectively reduce phonon conductivity, carrier mobility is also degraded, and optimized thermoelectric properties require careful control of the vacancy content in these solid solutions.  相似文献   

14.
The discovery of new, high-performing thermoelectrics is of vital importance to promoting thermal energy conversion efficiency. Herein, a new p-type thermoelectric material BaAgAs with an exceptional figure of merit (zT) surpassing 1.1 at 970 K is present as a promising candidate for high-temperature applications. Verified by comprehensive experimental and theoretical investigations, BaAgAs possesses two intrinsic features in favoring zT: i) low lattice thermal conductivity, ascribed to the heavy element Ba in a loose mono-hexagonal layer, the large mass fluctuation in the Ag-As honeycomb layer, and the alternately interlayer stacking between mono-hexagonal and honeycomb layers; ii) good electrical properties contributed by multiple band transport, due to the small band offset between two valence band extremums and the strong anisotropic band effective mass. With enhanced phonon–phonon scattering via Sb/Bi substitution on the As sites, the lattice thermal conductivity is minimized, which results in significantly enhanced zT values. Additionally, an inspiring prediction via the first-principles calculation suggests that n-type BaAgAs can potentially outperform its p-type counterpart due to its higher conducting band degeneracy. This study will stimulate intense interests in the exploration of compounds with planar honeycomb structures as new high-performance thermoelectric materials.  相似文献   

15.
Thermoelectric technology has attracted great attention due to its ability to recover and convert waste heat into readily available electric energy. Among the various candidate materials, liquid‐like compounds have received tremendous research interest on account of their intrinsically ultralow lattice thermal conductivity, tunable electrical properties, and high thermoelectric performance. Despite their complex phase transitions and diverse crystal structures, liquid‐like materials have two independent sublattices in common: one rigid sublattice formed by immobile ions for the free transport of electrons and one liquid‐like sublattice consisting of highly mobile ions to interrupt the thermal transports. This review first outlines the common structural features of liquid‐like thermoelectrics, along with their unusual electron and phonon transport behaviors that well satisfy the concept of “phonon‐liquid electron‐crystal.” Next, some commonly adopted strategies for further improving their thermoelectric performance are highlighted. The main progress achieved in the typical liquid‐like TE materials is then summarized, with an emphasis on their diverse crystal structures, common characteristics, and unique transport properties. The recent understandings on the stability issue of liquid‐like TE materials are also introduced. Finally, an outlook is given for the liquid‐like materials with the aim to boost further development in this exciting scientific subfield.  相似文献   

16.
Measurement of local disorder and lattice vibrations is of great importance for understanding the mechanisms whereby thermoelectric materials efficiently convert heat to electricity. Attaining high thermoelectric power requires minimizing thermal conductivity while keeping electric conductivity high. This situation is achievable by enhancing phonon scattering through specific structural disorder (phonon glass) that also retains sufficient electron mobility (electron crystal). It is demonstrated that the quantitative acquisition of multiple annular‐dark‐field images via scanning transmission electron microscopy at different scattering‐angles simultaneously allows not only the separation but also the accurate determination of static and thermal atomic displacements in crystals. Applying the unique method to the layered thermoelectric material (Ca2CoO3)0.62CoO2 discloses the presence of large incommensurate displacive modulation and enhanced local vibration of atoms, largely confined within its Ca2CoO3 sublayers. Relating the refined disorder to ab initio calculations of scattering rates is a tremendeous challenge. Based on an approximate calculation of scattering rates, it is suggested that this well‐defined deterministic disorder engenders static displacement‐induced scattering and vibrational‐induced resonance scattering of phonons as the origin of the phonon glass. Concurrently, the crystalline CoO2 sublayers provide pathways for highly conducting electrons and large thermal voltages.  相似文献   

17.
Type I clathrates have recently been identified as prospective thermoelectric materials for power generation purposes due to their very low lattice thermal conductivity values. The maximum thermoelectric figure of merit of almost all type I clathrates is, however, less than 1 and occurs at, or above, 1000 K, making them unfavorable especially for intermediate temperature applications. In this report, the Zintl–Klemm rule is demonstrated to be valid for Ni, Cu, and Zn transition metal substitution in the framework of type I clathrates and offers many degrees of freedom for material modification, design, and optimization. The cross‐substitution of framework elements introduces ionized impurities and lattice defects into these materials, which optimize the scattering of charge carriers by the substitution‐induced ionized impurities and the scattering of heat‐carrying lattice phonons by point defects, respectively, leading to an enhanced power factor, reduced lattice thermal conductivity, and therefore improved thermoelectric figure of merit. Most importantly, the bandgap of these materials can be tuned between 0.1 and 0.5 eV by adjusting the cross‐substitution ratio of framework elements, making it possible to design clathrates with excellent thermoelectric properties between 500 and 1000 K.  相似文献   

18.
Tetrahedrite, Cu12Sb4S13, is an abundant mineral with excellent thermoelectric properties owing to its low thermal conductivity. The electronic and structural origin of the intriguing physical properties of tetrahedrite, including its metal‐to‐semiconductor transition (MST), remains largely unknown. This work presents the first determination of the low‐temperature structure of tetrahedrite that accounts for its unique properties. Contrary to prior conjectures, the results show that the trigonal–planar copper cations remain in planar coordination below the MST. The atomic displacement parameters of the trigonal–planar copper cations, which have been linked to low thermal conductivity, increase by 200% above the MST. The phase transition is a consequence of the orbital degeneracy of the highest occupied 3d cluster orbitals of the copper clusters found in the cubic phase. This study reveals that a Jahn–Teller electronic instability leads to the formation of “molecular‐like” Cu57+ clusters and suppresses copper rattling vibrations due to the strengthening of direct copper–copper interactions. First principles calculations demonstrate that the structural phase transition opens a small band gap in the electronic density of states and eliminates the unstable phonon modes. These results provide insights on the interplay between phonon transport, electronic properties, and crystal structure in mixed‐valence compounds.  相似文献   

19.
A deficiency of Ga in wide band‐gap AgGa1‐xTe2 semiconductors (1.2 eV) can be used to optimize the electrical transport properties and reduce the thermal conductivity to achieve ZT > 1 at 873 K. First‐principles density functional theory calculations and a Boson peak observed in the low temperature heat capacity data indicate the presence of strong coupling between optical phonons with low frequency and heat carrying acoustical phonons, resulting in a depressed maximum of Debye frequency in the first Brillouin zone and low phonon velocities. Moreover, the Ag? Te bond lengths and Te? Ag? Te bond angles increase with rising temperature, leading to a significant distortion of the [AgTe4]7? tetrahedra, but an almost unmodified [GaTe4]5? tetrahedra. This behavior results in lattice expansion in the ab‐plane and contraction along the c‐axis, corresponding to the positive and negative Gruneisen parameters in the phonon spectral calculations. This effect gives rise to the large anharmonic behavior of the lattice. These factors together with the low frequency vibrations of Ag and Te atoms in the structure lead to an ultralow thermal conductivity of 0.18 W m?1 K?1 at 873 K.  相似文献   

20.
The extraordinary thermoelectric properties of lead chalcogenides have attracted huge interest in part due to their unexpected low thermal conductivity. Here, it is shown that anharmonicity and large cation disorder are present in both PbTe and PbS, based on elaborate charge density visualization using synchrotron powder X‐ray diffraction (SPXRD) data analyzed with the maximum entropy method (MEM). In both systems, the cation disorder increases with increasing temperature, whereas the Te/S anions appear to be centered on the expected lattice positions. Even at the lowest temperatures of 105 K, the lead ion is on average displaced by ≈0.2 Å from the rock‐salt lattice position, creating a strong phonon scattering mechanism. These findings provide a clue to understanding the excellent thermoelectric performance of crystals with atomic disorder. The SPXRD–MEM approach can be applied in general opening up for widespread characterization of subtle structural features in crystals with unusual properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号