首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of amino N‐oxide functionalized polyfluorene homopolymers and copolymers (PNOs) are synthesized by oxidizing their amino functionalized precursor polymers (PNs) with hydrogen peroxide. Excellent solubility in polar solvents and good electron injection from high work‐function metals make PNOs good candidates for interfacial modification of solution processed multilayer polymer light‐emitting diodes (PLEDs) and polymer solar cells (PSCs). Both PNOs and PNs are used as cathode interlayers in PLEDs and PSCs. It is found that the resulting devices show much better performance than devices based on a bare Al cathode. The effect of side chain and main chain variations on the device performance is investigated. PNOs/Al cathode devices exhibit better performance than PNs/Al cathode devices. Moreover, devices incorporating polymers with para‐linkage of pyridinyl moieties exhibit better performance than those using polymers with meta‐linked counterparts. With a poly[(2,7‐(9,9‐bis(6‐(N,N‐diethylamino)‐hexyl N‐oxide)fluorene))‐alt‐(2,5‐pyridinyl)] (PF6NO25Py) cathode interlayer, the resulting device exhibits a luminance efficiency of 16.9 cd A?1 and a power conversion efficiency of 6.9% for PLEDs and PSCs, respectively. These results indicate that PNOs are promising new cathode interlayers for modifying a range of optoelectronic devices.  相似文献   

2.
The syntheses of new fluorene‐based π‐conjugated copolymers; namely, poly((5,5″‐(3′,4′‐dihexyl‐2,2′;5′,2″‐terthiophene 1′,1′‐dioxide))‐alt‐2,7‐(9,9‐dihexylfluorene)) (PFTORT), poly((5,5″″‐(3″,4″‐dihexyl‐2,2′:5′,2′:5″,2‴:5‴,2″″‐quinquethiophene 1″,1″‐dioxide))‐alt‐2,7‐(9,9‐dihexylfluorene)) (PFTTORTT), and poly((5,5‐E‐α‐(2‐thienyl)methylene)‐2‐thiopheneacetonitrile)‐alt‐2,7‐(9,9‐dihexylfluorene)) (PFTCNVT), are reported. In the solid state, PFTORT and PFTCNVT present red–orange emission (with a maximum at 610 nm) while PFTTORTT shows a red emission with a maximum at 666 nm. In all cases, electrochemical measurements have revealed p‐ and n‐dopable copolymers. All these copolymers have been successfully tested in simple light‐emitting diodes and show promising results for orange‐ and red‐light‐emitting devices.  相似文献   

3.
A series of star‐shaped small molecular cathode interlayer materials are synthesized for PTB7:PC71BM based polymer solar cells (PSCs), comprising neutral amino groups, quaternary ammonium ions, amino N‐oxides, and sulfobetaine ions as pendant polar functionalities, respectively. For the first time, the effect of these different pendant functional groups with or without mobile counterions on the cells' photovoltaic properties is investigated in detail. A large improvement in device performance is observed by inserting these cathode interfacial layers (CILs) between the PTB7:PC71BM active layer and the Al electrode. The CILs could effectively lower the work function of the Al cathode, increase the built‐in potential, and decrease the series resistance of the related PSCs. poly(9,9‐dioctylfluorene‐co‐N‐[4‐(3‐methyl‐propyl)]‐diphenylamine) with pendant quaternary ammonium ions shows the best cathode modification ability, giving rise to the highest power conversion efficiency of 10.1%, even better than that of the typical poly[(9,9‐bis(3′‐(N,N‐dimethylamino)propyl)‐2,7‐fluorene)‐alt‐2,7‐(9,9‐dioctylfluorene)] based device. The design strategy and structure–property relationships concluded in this work will be helpful to develop more efficient cathode interface materials for high‐performance PSCs in the future.  相似文献   

4.
The realization of fully solution processed multilayer polymer light‐emitting diodes (PLEDs) constitutes the pivotal point to push PLED technology to its full potential. Herein, a fully solution processed triple‐layer PLED realized by combining two different deposition strategies is presented. The approach allows a successive deposition of more than two polymeric layers without extensively redissolving already present layers. For that purpose, a poly(9,9‐dioctyl‐fluorene‐co‐N‐(4‐butylphenyl)‐diphenylamine) (TFB) layer is stabilized by a hard‐bake process as hole transport layer on top of poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). As emitting layer, a deep blue emitting pyrene‐triphenylamine copolymer is deposited from toluene solution. To complete the device assembly 9,9‐bis(3‐(5′,6′‐bis(4‐(polyethylene glycol)phenyl)‐[1,1′:4′,1″‐terphenyl]‐2′‐yl)propyl)‐9′,9′‐dioctyl‐2,7‐polyfluorene (PEGPF), a novel polyfluorene‐type polymer with polar sidechains, which acts as the electron transport layer, is deposited from methanol in an orthogonal solvent approach. Atomic force microscopy verifies that all deposited layers stay perfectly intact with respect to morphology and layer thickness upon multiple solvent treatments. Photoelectron spectroscopy reveals that the offsets of the respective frontier energy levels at the individual polymer interfaces lead to a charge carrier confinement in the emitting layer, thus enhancing the exciton formation probability in the device stack. The solution processed PLED‐stack exhibits bright blue light emission with a maximum luminance of 16 540 cd m?2 and a maximum device efficiency of 1.42 cd A?1, which denotes a five‐fold increase compared to corresponding single‐layer devices and demonstrates the potential of the presented concept.  相似文献   

5.
2,7‐Bis(p‐methoxyphenyl‐m′‐tolylamino)‐9,9‐dimethylfluorene ( 1′ ), 2,7‐bis(phenyl‐m′‐tolylamino)‐9,9‐dimethylfluorene ( 2′ ) and 2,7‐bis(p‐fluorophenyl‐m′‐tolylamino)‐9,9‐dimethylfluorene ( 3′ ) have been synthesized using the palladium‐catalyzed reaction of the appropriate diarylamines with 2,7‐dibromo‐9,9‐dimethylfluorene. These molecules have glass‐transition temperatures 15–20 °C higher than those for their biphenyl‐bridged analogues, and are 0.11–0.14 V more readily oxidized. Fluorescence spectra and fluorescence quantum yields for dimethylfluorene‐bridged and biphenyl‐bridged species are similar, but the peaks of the absorption spectra of 1′ – 3′ are considerably red‐shifted relative to those of their biphenyl‐bridged analogues. Time‐of‐flight hole mobilities of 1′ – 3′ /polystyrene blends are in a similar range to those of the biphenyl‐bridged analogues. Analysis according to the disorder formalism yields parameters rather similar to those for the biphenyl species, but with somewhat lower zero‐field mobility values. Density functional theory (DFT) calculations suggest that the enforced planarization of the fluorene bridge leads to a slightly larger reorganization energy for the neutral/cation electron‐exchange reaction than in the biphenyl‐bridged system. Organic light‐emitting diodes have been fabricated using 1′ – 3′ /polystyrene blends as the hole‐transport layer and tris(8‐hydroxy quinoline)aluminium as the electron‐transport layer and lumophore. Device performance shows a correlation with the ionization potential of the amine materials paralleling that seen in biphenyl‐based systems, and fluorene species show similar performance to biphenyl species with comparable ionization potential.  相似文献   

6.
Novel poly[(9,9‐bis((6′‐(N,N,N‐trimethylammonium)hexyl)‐2,7‐fluorene)‐alt‐(9,9‐bis(2‐(2‐(2‐methoxyethoxy)ethoxy)ethyl)‐9‐fluorene)) dibromide (WPF‐6‐oxy‐F) and poly[(9,9‐bis((6′‐(N,N,N‐trimethylammonium)hexyl)‐2,7‐fluorene)‐alt‐(9,9‐bis(2‐(2‐methoxyethoxy)ethyl)‐fluorene)] dibromide (WPF‐oxy‐F) compounds are developed and the use of these water‐soluble polymers as an interfacial layer for low‐cost poly(3‐hexylthiophene):phenyl‐C61 butyric acid methyl ester (P3HT:PCBM) organic solar cells (OSCs) is investigated. When WPF‐oxy‐F or WPF‐6‐oxy‐F is simply inserted between the active layer and the cathode as an interfacial dipole layer by spin‐coating water‐soluble polyfluorenes, the open‐circuit voltage (Voc), fill factor (FF), and power‐conversion efficiency (PCE) of photovoltaic cells with high work‐function metal cathodes, such as Al, Ag, Au, and Cu, dramatically increases. For example, when WPF‐6‐oxy‐F is used with Al, Ag, Au, or Cu, regardless of the work‐function of the metal cathode, the Voc is 0.64, 0.64, 0.58, and 0.63 V, respectively, approaching the original value of the P3HT:PCBM system because of the formation of large interfacial dipoles through a reduction of the metal work‐function. In particular, introducing WPF‐6‐oxy‐F into a low‐cost Cu cathode dramatically enhanced the device efficiency from 0.8% to 3.36%.  相似文献   

7.
Alkoxy side‐chain tethered polyfluorene conjugated polyelectrolyte (CPE), poly[(9,9‐bis((8‐(3‐methyl‐1‐imidazolium)octyl)‐2,7‐fluorene)‐alt‐(9,9‐bis(2‐(2‐methoxyethoxy)ethyl)‐fluorene)] dibromide (F8imFO4), is utilized to obtain CPE‐hybridized ZnO nanoparticles (NPs) (CPE:ZnO hybrid NPs). The surface defects of ZnO NPs are passivated through coordination interactions with the oxygen atoms of alkoxy side‐chains and the bromide anions of ionic pendent groups from F8imFO4 to the oxygen vacancies of ZnO NPs, and thereby the fluorescence quenching at the interface of yellow‐emitting poly(p‐phenylene vinylene)/CPE:ZnO hybrid NPs is significantly reduced at the CPE concentration of 4.5 wt%. Yellow‐emitting polymer light‐emitting diodes (PLEDs) with CPE(4.5 wt%):ZnO hybrid NPs as a cathode interfacial layer show the highest device efficiencies of 11.7 cd A?1 at 5.2 V and 8.6 lm W?1 at 3.8 V compared to the ZnO NP only (4.8 cd A?1 at 7 V and 2.2 lm W?1 at 6.6 V) or CPE only (7.3 cd A?1 at 5.2 V and 4.9 lm W?1 at 4.2 V) devices. The results suggest here that the CPE:ZnO hybrid NPs has a great potential to improve the device performance of organic electronics.  相似文献   

8.
The temperature dependence of field‐effect transistor (FET) mobility is analyzed for a series of n‐channel, p‐channel, and ambipolar organic semiconductor‐based FETs selected for varied semiconductor structural and device characteristics. The materials (and dominant carrier type) studied are 5,5′′′‐bis(perfluorophenacyl)‐2,2′:5′,2″:5″,2′′′‐quaterthiophene ( 1 , n‐channel), 5,5′′′‐bis(perfluorohexyl carbonyl)‐2,2′:5′,2″:5″,2′′′‐quaterthiophene ( 2 , n‐channel), pentacene ( 3 , p‐channel); 5,5′′′‐bis(hexylcarbonyl)‐2,2′:5′,2″:5″,2′′′‐quaterthiophene ( 4 , ambipolar), 5,5′′′‐bis‐(phenacyl)‐2,2′: 5′,2″:5″,2′′′‐quaterthiophene ( 5 , p‐channel), 2,7‐bis((5‐perfluorophenacyl)thiophen‐2‐yl)‐9,10‐phenanthrenequinone ( 6 , n‐channel), and poly(N‐(2‐octyldodecyl)‐2,2′‐bithiophene‐3,3′‐dicarboximide) ( 7 , n‐channel). Fits of the effective field‐effect mobility (µeff) data assuming a discrete trap energy within a multiple trapping and release (MTR) model reveal low activation energies (EAs) for high‐mobility semiconductors 1 – 3 of 21, 22, and 30 meV, respectively. Higher EA values of 40–70 meV are exhibited by 4 – 7 ‐derived FETs having lower mobilities (µeff). Analysis of these data reveals little correlation between the conduction state energy level and EA, while there is an inverse relationship between EA and µeff. The first variable‐temperature study of an ambipolar organic FET reveals that although n‐channel behavior exhibits EA = 27 meV, the p‐channel regime exhibits significantly more trapping with EA = 250 meV. Interestingly, calculated free carrier mobilities (µ0) are in the range of ~0.2–0.8 cm2 V?1 s?1 in this materials set, largely independent of µeff. This indicates that in the absence of charge traps, the inherent magnitude of carrier mobility is comparable for each of these materials. Finally, the effect of temperature on threshold voltage (VT) reveals two distinct trapping regimes, with the change in trapped charge exhibiting a striking correlation with room temperature µeff. The observation that EA is independent of conduction state energy, and that changes in trapped charge with temperature correlate with room temperature µeff, support the applicability of trap‐limited mobility models such as a MTR mechanism to this materials set.  相似文献   

9.
A new series of full hydrocarbons, namely 4,4′‐(9,9′‐(1,3‐phenylene)bis(9H‐fluorene‐9,9‐diyl))bis(N,N‐diphenylaniline) (DTPAFB), N,N′‐(4,4′‐(9,9′‐(1,3‐phenylene)bis(9H‐fluorene‐9,9‐diyl))bis(4,1‐phenylene))bis(N‐phenylnaphthalen‐1‐amine) (DNPAFB), 1,3‐bis(9‐(4‐(9H‐carbazol‐9‐yl)phenyl)‐9H‐fluoren‐9‐yl)benzene, and 1,3‐bis(9‐(4‐(3,6‐di‐tert‐butyl‐9H‐carbazol‐9‐yl)phenyl)‐9H‐fluoren‐9‐yl)benzene, featuring a highly twisted tetrahedral conformation, are designed and synthesized. Organic light‐emitting diodes (OLEDs) comprising DNPAFB and DTPAFB as hole transporting layers and tris(quinolin‐8‐yloxy)aluminum as an emitter are made either by vacuum deposition or by solution processing, and show much higher maximum efficiencies than the commonly used N,N′‐di(naphthalen‐1‐yl)‐N,N′‐diphenylbiphenyl‐4,4′‐diamine device (3.6 cd A?1) of 7.0 cd A?1 and 6.9 cd A?1, respectively. In addition, the solution processed blue phosphorescent OLEDs employing the synthesized materials as hosts and iridium (III) bis[(4,6‐di‐fluorophenyl)‐pyridinato‐N, C2] picolinate (FIrpic) phosphor as an emitter present exciting results. For example, the DTPAFB device exhibits a brightness of 47 902 cd m?2, a maximum luminescent efficiency of 24.3 cd A?1, and a power efficiency of 13.0 lm W?1. These results show that the devices are among the best solution processable blue phosphorescent OLEDs based on small molecules. Moreover, a new approach to constructing solution processable small molecules is proposed based on rigid and bulky fluorene and carbazole moieties combined in a highly twisted configuration, resulting in excellent solubility as well as chemical miscibility, without the need to introduce any solubilizing group such as an alkyl or alkoxy chain.  相似文献   

10.
A fully conjugated para‐phenylene ladder polymer ( P1 ) and the alternating copolymers {2,7‐[9,9‐bis(2‐ethylhexyl)fluorene]‐5,5′‐(2,2′‐bithiophene)} ( P3 ) and {2,7‐[9,9‐dioctylfluorene]‐5,5′‐(2,2′‐bithiophene)} ( P4 ) have been prepared via metal‐mediated cross‐coupling reactions, using microwaves as a heat source. The procedure, which yields polymeric material in ca. ten minutes, has no adverse effects on the quality of the polymers and displays a high degree of reproducibility. Transfer of the optimized conditions to the synthesis of a new naphthalene‐based polyarylene‐ketone ( P2 ) and a (1,5‐dioctoxynaphthylene‐2,6‐diyl‐alt‐2,2′‐bithiophene‐5,5′‐diyl) copolymer ( P5 ) confirmed the versatility of the procedure and the dramatic reduction in reaction times compared with conventional heating. In the case of the Stille‐type coupling reaction of the electron‐rich, less reactive dibromo monomer 1,5‐dioctoxy‐2,6‐dibromo‐naphthalene, the microwave‐assisted protocol results in a marked increase in both yield and molecular weight.  相似文献   

11.
By doping 2,7‐bis[4‐(N‐carbazole)phenylvinyl]‐9,9′‐spirobifluorene (spiro‐SBCz) into a wide energy gap 4,4′‐bis(9‐carbazole)‐2,2′‐biphenyl (CBP) host, we demonstrate an extremely low ASE threshold of Eth = (0.11 ± 0.05) μJ cm–2 (220 W cm–2) which is the lowest ASE threshold ever reported. In addition, we confirmed that the spiro‐SBCz thin film functions as an active light emitting layer in organic light‐emitting diode (OLED) and a field‐effect transistor (FET). In particular, we succeeded to obtain linear electroluminescence in the FET structure which will be useful for future organic laser diodes.  相似文献   

12.
Two host materials of {4‐[diphenyl(4‐pyridin‐3‐ylphenyl)silyl]phenyl}diphenylamine (p‐PySiTPA) and {4‐[[4‐(diphenylphosphoryl)phenyl](diphenyl)silyl]phenyl}diphenylamine (p‐POSiTPA), and an electron‐transporting material of [(diphenylsilanediyl)bis(4,1‐phenylene)]bis(diphenylphosphine) dioxide (SiDPO) are developed by incorporating appropriate charge transporting units into the tetraarylsilane skeleton. The host materials feature both high triplet energies (ca. 2.93 eV) and ambipolar charge transporting nature; the electron‐transporting material comprising diphenylphosphine oxide units and tetraphenylsilane skeleton exhibits a high triplet energy (3.21 eV) and a deep highest occupied molecular orbital (HOMO) level (‐6.47 eV). Using these tetraarylsilane‐based functional materials results in a high‐efficiency blue phosphorescent device with a three‐organic‐layer structure of 1,1‐bis[4‐[N,N‐di(p‐tolyl)‐amino]phenyl]cyclohexane (TAPC)/p‐POSiTPA: iridium(III) bis(4′,6′‐difluorophenylpyridinato)tetrakis(1‐pyrazolyl)borate (FIr6)/SiDPO that exhibits a forward‐viewing maximum external quantum efficiency (EQE) up to 22.2%. This is the first report of three‐organic‐layer FIr6‐based blue PhOLEDs with the forward‐viewing EQE over 20%, and the device performance is among the highest for FIr6‐based blue PhOLEDs even compared with the four or more than four organic‐layer devices. Furthermore, with the introduction of bis(2‐(9,9‐diethyl‐9H‐fluoren‐2‐yl)‐1‐phenyl‐1H‐benzoimidazol‐N,C3)iridium acetylacetonate [(fbi)2Ir(acac)] as an orange emitter, an all‐phosphor warm‐white PhOLED achieves a peak power efficiency of 47.2 lm W?1, which is close to the highest values ever reported for two‐color white PhOLEDs.  相似文献   

13.
This paper reports state‐of‐the‐art fluorene‐based yellow‐green conjugated polymer blend gain media using Förster resonant‐energy‐transfer from novel blue‐emitting hosts to yield low threshold (≤7 kW cm?2) lasers operating between 540 and 590 nm. For poly(9,9‐dioctylfluorene‐co‐benzothiadiazole) (F8BT) (15 wt%) blended with the newly synthesized 3,6‐bis(2,7‐di([1,1′‐biphenyl]‐4‐yl)‐9‐phenyl‐9H‐fluoren‐9‐yl)‐9‐octyl‐9H–carbazole (DBPhFCz) a highly desirable more than four times increase (relative to F8BT) in net optical gain to 90 cm?1 and 34 times reduction in amplified spontaneous emission threshold to 3 µJ cm?2 is achieved. Detailed transient absorption studies confirm effective exciton confinement with consequent diffusion‐limited polaron‐pair generation for DBPhFCz. This delays formation of host photoinduced absorption long enough to enable build‐up of the spectrally overlapped, guest optical gain, and resolves a longstanding issue for conjugated polymer photonics. The comprehensive study further establishes that limiting host conjugation length is a key factor therein, with 9,9‐dialkylfluorene trimers also suitable hosts for F8BT but not pentamers, heptamers, or polymers. It is additionally demonstrated that the host highest occupied and lowest unoccupied molecular orbitals can be tuned independently from the guest gain properties. This provides the tantalizing prospect of enhanced electron and hole injection and transport without endangering efficient optical gain; a scenario of great interest for electrically pumped amplifiers and lasers.  相似文献   

14.
We report the design and synthesis of three alcohol‐soluble neutral conjugated polymers, poly[9,9‐bis(2‐(2‐(2‐diethanolaminoethoxy) ethoxy)ethyl)fluorene] (PF‐OH), poly[9,9‐bis(2‐(2‐(2‐diethanol‐aminoethoxy)ethoxy)ethyl)fluorene‐alt‐4,4′‐phenylether] (PFPE‐OH) and poly[9,9‐bis(2‐(2‐(2‐diethanolaminoethoxy) ethoxy)ethyl)fluorene‐alt‐benzothiadizole] (PFBT‐OH) with different conjugation length and electron affinity as highly efficient electron injecting and transporting materials for polymer light‐emitting diodes (PLEDs). The unique solubility of these polymers in polar solvents renders them as good candidates for multilayer solution processed PLEDs. Both the fluorescent and phosphorescent PLEDs based on these polymers as electron injecting/transporting layer (ETL) were fabricated. It is interesting to find that electron‐deficient polymer (PFBT‐OH) shows very poor electron‐injecting ability compared to polymers with electron‐rich main chain (PF‐OH and PFPE‐OH). This phenomenon is quite different from that obtained from conventional electron‐injecting materials. Moreover, when these polymers were used in the phosphorescent PLEDs, the performance of the devices is highly dependent on the processing conditions of these polymers. The devices with ETL processed from water/methanol mixed solvent showed much better device performance than the devices processed with methanol as solvent. It was found that the erosion of the phosphorescent emission layer could be greatly suppressed by using water/methanol mixed solvent for processing the polymer ETL. The electronic properties of the ETL could also be influenced by the processing conditions. This offers a new avenue to improve the performance of phosphorescent PLEDs through manipulating the processing conditions of these conjugated polymer ETLs.  相似文献   

15.
Three triphenyl benzene derivatives of 1,3,5‐tri(m‐pyrid‐2‐yl‐phenyl)benzene (Tm2PyPB), 1,3,5‐tri(m‐pyrid‐3‐yl‐phenyl)benzene (Tm3PyPB) and 1,3,5‐tri(m‐pyrid‐4‐yl‐phenyl)benzene (Tm4PyPB), containing pyridine rings at the periphery, are developed as electron‐transport and hole/exciton‐blocking materials for iridium(III) bis(4,6‐(di‐fluorophenyl)pyridinato‐N,C2′)picolinate (FIrpic)‐based blue phosphorescent organic light‐emitting devices. Their highest occupied molecular orbital and lowest unoccupied molecular orbital (LUMO) energy levels decrease as the nitrogen atom of the pyridine ring moves from position 2 to 3 and 4; this is supported by both experimental results and density functional theory calculations, and gives improved electron‐injection and hole‐blocking properties. They exhibit a high electron mobility of 10?4–10?3 cm2 V?1 s?1 and a high triplet energy level of 2.75 eV. Confinement of FIrpic triplet excitons is strongly dependent on the nitrogen atom position of the pyridine ring. The second exponential decay component in the transient photoluminescence decays of Firpic‐doped films also decreases when the position of the nitrogen atom in the pyridine ring changes. Reduced driving voltages are obtained when the nitrogen atom position changes because of improved electron injection as a result of the reduced LUMO level, but a better carrier balance is achieved for the Tm3PyPB‐based device. An external quantum efficiency (EQE) over 93% of maximum EQE was achieved for the Tm4PyPB‐based device at an illumination‐relevant luminance of 1000 cd m?2, indicating reduced efficiency roll‐off due to better confinement of FIrpic triplet excitons by Tm4PyPB in contrast to Tm2PyPB and Tm3PyPB.  相似文献   

16.
The electron‐transporting material (ETM) is one of the key factors to determine the efficiency and stability of organic light‐emitting diodes (OLEDs). A novel ETM with a “(Acceptor)n–Donor–(Acceptor)n” (“(A)n–D–(A)n”) structure, 2,7‐di([2,2′:6′,2″‐terpyridin]‐4′‐yl)‐9,9′‐spirobifluorene (27‐TPSF), is synthesized by combining electron‐withdrawing terpyridine (TPY) moieties and rigid twisted spirobifluorene, in which the TPY moieties facilitate electron transport and injection while the spirobifluorene moiety ensures high triplet energy (T1 = 2.5 eV) as well as enhances glass transition temperature (Tg = 195 °C) for better stability. By using tris[2‐(p‐tolyl)pyridine]iridium(III) (Ir(mppy)3) as the emitter, the 27‐TPSF‐based device exhibits a maximum external quantum efficiency (ηext, max) of 24.5%, and a half‐life (T50) of 121, 6804, and 382 636 h at an initial luminance of 10 000, 1000, and 100 cd m?2, respectively, which are much better than the commercialized ETM of 9,10‐bis(6‐phenylpyridin‐3‐yl)anthracene (DPPyA). Furthermore, a higher efficiency, a ηext, max of 28.2% and a maximum power efficiency (ηPE, max) of 129.3 lm W?1, can be achieved by adopting bis(2‐phenylpyridine)iridium(III)(2,2,6,6‐tetramethylheptane‐3,5‐diketonate) (Ir(ppy)2tmd) as the emitter and 27‐TPSF as the ETM. These results indicate that the derivative of TPY to form “(A)n–D–(A)n” structure is a promising way to design an ETM with good comprehensive properties for OLEDs.  相似文献   

17.
Two fluorene-based conjugated polymer electrolyte (CPE) poly[(9,9-bis(6′-(N,N,N-trimethylammonium)hexyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFNBr) and poly[9,9-bis(4′-sulfonatobutyl)fluorene-alt-2,7-(9,9-dioctylfluorene)] sodium salt (PFSO3Na), bearing amine groups and anionic sulfonate groups on side chains respectively, are synthesized and applied as cathode interlayer in polymer solar cells. Both of the hydrophilic CPEs can well modify the interfacial properties and allow ohomic contact between the activelayer and cathode. The opposite charges exert great influence on the effective work function of cathode and interfacial interaction through the orientation of the interfacial dipole at the active layer/metal electrode interface, subsequently influence the resulting device performance. Compared with the cationic PFNBr, PFSO3Na with anionic sulfonate groups can dramatically reduce the work function of Al by accumulation of the polar groups at the PFSO3Na/Al interface to induce more favorable the interfacial dipole. The better energy alignment for electron extraction and transportation at active layer/Al interface is confirmed by a significant enhancement of VOC. The better wettability and morphology of PFSO3Na on the active layer and the more effective motion of sodium counterion further modify the barrier to facilitate electron extraction and transportation. Moreover, 14% and 22% performance enhancement can also be achieved respectively, when PFNBr and PFSO3Na are used as interlayers for low bandgap poly[N-9″-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)] (PCDTBT)-based solar cells.  相似文献   

18.
Highly efficient and fully solution‐processed white organic light‐emitting diodes (WOLEDs) based on fluorescent small molecules and a polar conjugated polymer as electron‐injection material are reported. The emitting layer in the WOLEDs is a blend of new blue‐, green‐, and red‐fluorescent small molecules, with a blending ratio of 100:0.4:0.8 (B/G/R) by weight, and a methanol/water soluble conjugated polymerpoly[(9,9‐bis(30‐(N,N‐dimethylamino)propyl)‐2,7‐fluorene)‐alt‐2,7‐(9,9‐dioctylfluorene)] (PFN) acts as the electron‐injection layer (EIL). All the organic layers are spin‐coated from solution. The device exhibits pure white emission with a maximum luminous efficiency of 9.2 cd A?1 and Commission Internationale d'Eclairage Coordinates of (0.35, 0.36). PFN acting as the EIL material plays a key role in the improvement of the device performance when used in solution‐processed small‐molecule WOLEDs.  相似文献   

19.
The charge‐transport properties of the spiro‐linked compounds 2,2′,7,7′‐tetrakis(diphenylamino)‐9,9′‐spirobifluorene, 2,2′,7,7′‐tetrakis(N,N′‐di‐p‐methylphenylamino)‐9,9′‐spirobifluorene, 2,2′,7,7′‐tetra(m‐tolyl‐phenylamino)‐9,9′‐spirobifluorene, and 2,2′,7,7′‐tetra(N‐phenyl‐1‐naphthylamine)‐9,9′‐spirobifluorene, and their corresponding parent compounds, N,N,N′,N′‐tetraphenylbenzidine, N,N,N′,N′‐tetrakis(4‐methylphenyl)benzidine, and N,N′‐bis(3‐methylphenyl)‐(1,1′‐biphenyl)‐4,4′‐diamine, N,N′‐diphenyl‐N,N′‐bis(1‐naphthyl)‐1,1′‐biphenyl‐4,4′‐diamine, are investigated. The field‐effect mobilities of charge carriers in thin films of the parent compounds are slightly higher than those of the spiro‐linked compounds. However, the transistor action of the parent‐compound thin films vanishes because the films crystallize after being stored in ambient atmosphere for a few days. In contrast, the hole mobilities in thin films of the spiro‐linked compounds do not change significantly after the samples are stored in ambient atmosphere for up to nine months. Also discussed is the temperature dependency of the mobilities of charge carriers, which is presented using two models, namely the Arrhenius and the Gaussian disorder models.  相似文献   

20.
Several new solution‐processable organic semiconductors based on dendritic oligoquinolines were synthesized and were used as electron‐transport and hole‐blocking materials to realize highly efficient blue phosphorescent organic light‐emitting diodes (PhOLEDs). Various substitutions on the quinoline rings while keeping the central meta‐linked tris(quinolin‐2‐yl)benzene gave electron transport materials that combined wide energy gap (>3.3 eV), moderate electron affinity (2.55‐2.8 eV), and deep HOMO energy level (<‐6.08 eV) with electron mobility as high as 3.3 × 10?3 cm2 V?1 s?1. Polymer‐based PhOLEDs with iridium (III) bis(4,6‐(di‐fluorophenyl)pyridinato‐N,C2′)picolinate (FIrpic) blue triplet emitter and solution‐processed oligoquinolines as the electron‐transport layers (ETLs) gave luminous efficiency of 30.5 cd A?1 at a brightness of 4130 cd m?2 with an external quantum efficiency (EQE) of 16.0%. Blue PhOLEDs incorporating solution‐deposited ETLs were over two‐fold more efficient than those containing vacuum‐deposited ETLs. Atomic force microscopy imaging shows that the solution‐deposited oligoquinoline ETLs formed vertically oriented nanopillars and rough surfaces that enable good ETL/cathode contacts, eliminating the need for cathode interfacial materials (LiF, CsF). These solution‐processed blue PhOLEDs have the highest performance observed to date in polymer‐based blue PhOLEDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号