首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, four donor (D)–acceptor (A) copolymers based on benzodithiophene (BDT) and benzothiadiazole (BT) with different alkylthiolated and/or fluorinated side chains are developed for efficient fullerene and nonfullerene polymer solar cells (PSCs). The synergistic effect of sulfuration and fluorination on the optical absorption, energy level, crystallinity, carrier mobility, blend morphology, and photovoltaic performance is investigated systematically. By incorporating sulfur atoms onto the side chains, a little blueshifted but significantly increased absorption can be obtained for PBDTS‐FBT compared to PBDT‐FBT . On the other side, a little more blueshifted but much stronger absorption and much lower‐lying highest occupied molecular orbital (HOMO) level can be realized for PBDTF‐FBT when introducing fluorine atoms instead of sulfur atoms. With the combination of both fluorination and sulfuration strategies, PBDTS‐FBT exhibits the best absorption ability, lowest HOMO energy level, and highest crystallinity, which make PBDTSF‐FBT devices show the highest power conversion efficiency (PCE) of 10.69% in fullerene PSCs and 11.66% in nonfullerene PSCs. The PCE of 11.66% is the best value for PSCs based on BT‐containing copolymer donors reported so far. The results indicate that fluorination and sulfuration have a synergistically positive effect on the performance of D–A photovoltaic copolymers and their solar cell devices.  相似文献   

2.
A new small‐molecule nonfullerene acceptor based on the benzo[1,2‐b:4,5‐b′]dithiophene (BDT) fused central core with asymmetrical alkoxy and thienyl side chains, namely TOBDT , is designed and synthesized. The alkoxy unit helps narrow the bandgap, and thienyl side chain helps enhance the intermolecular interaction. As a result, TOBDT is suitable to match the deep‐lying highest occupied molecular orbital (HOMO) of polymer donor PM6 . Then, a strong crystalline acceptor IDIC is introduced as the third component to fabricate as‐cast nonfullerene ternary devices to achieve absorption and morphology control. Addition of IDIC not only mixes well with TOBDT but modulates the morphology of the blend film, which helps to balance the charge transport properties and reduce the photovoltage loss of ternary devices. All these contribute to synergetic improvement of Jsc, Voc, and fill factor parameters, leading to a power conversion efficiency of 14.0% for the as‐cast fullerene‐free ternary device.  相似文献   

3.
Two wide bandgap star‐shaped small molecular acceptors, para‐TrBRCN and meta‐TrBRCN , are synthesized for efficient nonfullerene polymer solar cells (PSCs). The tiny structural variation by just changing the linkage positions affects largely the inherent properties of the resulting molecules. Both molecules have a nonplanar 3D structure, which can prevent the excessively aggregation to realize the optimized morphology and ideal domain size in their active blends. Compared to para‐TrBRCN , meta‐TrBRCN exhibits the smaller distortions between the truxene skeleton and the benzothiadiazole units, which would also lead to the enhanced π–π stacking and charge transfer. When blending with PTB7‐Th, high power conversion efficiencies (PCEs) of 10.15% and 8.28% are obtained for meta‐TrBRCN and para‐TrBRCN devices, respectively. To make up the weak absorption of above binary active blend in the longer wavelength region and increase the whole device performance further, low bandgap 3,9‐bis(2‐methylene‐(3‐(1,1‐dicyanomethylene)‐indanone)‐5,5,11,11‐tetrakis(4‐hexylthienyl)‐dithieno[2,3‐d:2′,3′‐d′]‐s‐indaceno[1,2‐b:5,6‐b′]‐dithiophene (ITIC‐Th) is added as the second acceptor material to fabricate ternary blend PSCs. After adding 20 wt% of ITIC‐Th, the resulting devices exhibit the well‐balanced optical absorption and fine‐tuned morphology, giving rise to the significantly improved PCE of 11.40% with much higher J sc of 18.25 mA cm?2 and fill factor of 70.2%.  相似文献   

4.
Nonfullerene polymer solar cells (PSCs) are fabricated with a perylene monoimide‐based n‐type wide‐bandgap organic semiconductor PMI‐F‐PMI as an acceptor and a bithienyl‐benzodithiophene‐based wide‐bandgap copolymer PTZ1 as a donor. The PSCs based on PTZ1:PMI‐F‐PMI (2:1, w/w) with the treatment of a mixed solvent additive of 0.5% N ‐methyl pyrrolidone and 0.5% diphenyl ether demonstrate a very high open‐circuit voltage (V oc) of 1.3 V with a higher power conversion efficiency (PCE) of 6%. The high V oc of the PSCs is a result of the high‐lying lowest unoccupied molecular orbital (LUMO) of ?3.42 eV of the PMI‐F‐PMI acceptor and the low‐lying highest occupied molecular orbital (HOMO) of ?5.31 eV of the polymer donor. Very interestingly, the exciton dissociation efficiency in the active layer is quite high, even though the LUMO and HOMO energy differences between the donor and acceptor materials are as small as ≈0.08 and 0.19 eV, respectively. The PCE of 6% is the highest for the PSCs with a V oc as high as 1.3 V. The results indicate that the active layer based on PTZ1/PMI‐F‐PMI can be used as the front layer in tandem PSCs for achieving high V oc over 2 V.  相似文献   

5.
New donor–acceptor‐type copolymers comprised of benzobisthiazole (BBTz) as a weak donor rather than acceptor are proposed. This approach can simultaneously lead to deepening the HOMO and LUMO of the polymers with moderate energy offset against fullerene derivatives in bulk heterojunction organic photovoltaics. As a proof‐of‐concept, BBTz‐based random copolymers conjugated with typical electron acceptors: thienopyrroledione (TPD) and benzothiadiazole (BT) based on density functional theory calculations are synthesized. Laser‐flash and Xe‐flash time‐resolved microwave conductivity (TRMC) evaluations of polymer:[6,6]‐phenyl C61 butyric acid methyl ester (PCBM) blends are conducted to screen the feasibility of the copolymers, leading to optimization of processing conditions for photovoltaic device application. According to the TMRC results, alternating BBTz‐BT copolymers are designed, exhibiting extended photoabsorption up to ca. 750 nm, deep HOMO (–5.5 to –5.7 eV), good miscibility with PCBM, and inherent crystalline nature. Moreover, the maximized PCE of 3.8%, the top‐class among BBTz‐based polymers reported so far, is realized in an inverted cell using TiOx and MoOx as the buffer layers. This study opens up opportunities to create low‐bandgap polymers with deep HOMO, and shows how the device‐less TRMC evaluation is of help for decision‐making on judicious molecular design.  相似文献   

6.
Ternary polymer solar cells (PSCs) are one of the most promising device architectures that maintains the simplicity of single‐junction devices and provides an important platform to better tailor the multiple performance parameters of PSCs. Herein, a ternary PSC system is reported employing a wide bandgap polymeric donor (PBTA‐PS) and two small molecular nonfullerene acceptors (labeled as LA1 and 6TIC). LA1 and 6TIC keep not only well‐matched absorption profiles but also the rational crystallization properties. As a result, the optimal ternary PSC delivers a state of the art power conversion efficiency (PCE) of 14.24%, over 40% higher than the two binary devices, resulting from the prominently increased short‐circuit current density (Jsc) of 22.33 mA cm?2, moderate open‐circuit voltage (Voc) of 0.84 V, and a superior fill factor approaching 76%. Notably, the outstanding PCE of the ternary PSC ranks one of the best among the reported ternary solar cells. The greatly improved performance of ternary PSCs mainly derives from combining the complementary properties such as absorption and crystallinity. This work highlights the great importance of the rational design of matched acceptors toward highly efficient ternary PSCs.  相似文献   

7.
Improved charge generation via fast and effective hole transfer in all‐polymer solar cells (all‐PSCs) with large highest occupied molecular orbital (HOMO) energy offset (ΔEH) is revealed utilizing ultrafast transient absorption (TA) spectroscopy. Blending the same nonfullerene acceptor poly{[N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene) (N2200) with three different donor polymers produces all‐polymer blends with different ΔEH. The selective excitation of N2200 component in blends enables to uncover the hole transfer process from hole polaron‐induced bleaching and absorption signals probed at different wavelength. As the ΔEH is enhanced from 0.14 to 0.37 eV, the hole transfer rate rises more than one order and the hole transfer efficiency increases from 12.9% to 86.8%, in agreement with the trend of internal quantum efficiency in the infrared region where only N2200 has absorption. Additionally, Grazing‐incidence wide‐angle X‐ray scattering measurements indicate that face‐on crystal orientation in both polymer donor and acceptor also plays an important role in facilitating the charge generation via hole transfer in all‐PSCs. Hence, large ΔEH and proper crystal orientation should be considered in material design for efficient hole transfer in N2200‐based heterostructures. These results can provide valuable guidance for fabrication of all‐PSCs to further improve power conversion efficiency.  相似文献   

8.
The contradiction between enlarging the offset between energy levels of donor/acceptor and the required driving force for exciton split leads to a trade‐off between open circuit voltage (VOC) and short circuit current density (JSC), which is a big challenge for development of high performance polymer solar cells (PSCs). Some advanced works reported the PSCs with low photon energy loss (Eloss) and small driving force, but the correlation of molecular structures of light‐harvesting system and driving force is still unclear. In this work, a new alkylsilyl functionalized copolymer donor PBDS‐T (PBDST: poly[(2,6trialkylsilyl thiophen2yl)benzo[1,2b:4,5b′]dithiophene))alt(5,5(1′,3′di2thienyl5′,7′bis(2ethylhexyl)benzo[1′,2′c:4′,5′c′]dithiophene4,8dione))]) with low‐lying energy levels was designed for efficient PSCs. By monitoring the Photoluminescence quenching of the bulk and bilayer heterojunctions, small driving forces, ?EHOMO of 0.15 eV and ?ELUMO of 0.22 eV were founded to allow for efficient charge transfer, which were observed to correlate with the crystalline PBDS‐T and the optimal morphology in PBDS‐T:ITIC (ITIC: 3,9bis(2methylene(3(1,1dicyanomethylene)indanone))5,5,11,11tetrakis(4hexylphenyl)dithieno[2,3d:2′,3′d′]sindaceno[1,2b:5,6b′]dithiophene). Simultaneously improved VOC, JSC and small Eloss boosted the PCE over 11%, which is one of the highest values for annealing‐free device. These results shield a light on precise design of a light‐harvesting system with small driving force to simultaneously improve the VOC and JSC for highly efficient PSCs.  相似文献   

9.
AbstractThis review collects recent five-year publications on low bandgap semiconducting polymers, which are composed of electron donor (D) and electron acceptor (A) units, exhibiting the power conversion efficiency (PCE) higher than 6%. When the photovoltaic performances of different types of D−A semiconducting copolymers are compared after the copolymers are classified into several categories according to the type of A-units, it is realized that diketopyrrolopyrrole (DPP)-based copolymers exhibit high JSCs owing to low bandgaps and low VOCs due to high-lying HOMO levels, while thienopyrroledione (TPD)-based copolymers exhibit high VOCs due to their deep HOMO levels and low JSCs because of wide bandgaps. Benzothiadiazole- and thienothiophene-based copolymers show intermediate values of VOC and JSC between DPP- and TPD-based ones. For further enhancement of photovoltaic performance, DPP-based copolymers may be designed to have deeper HOMO level with the minimum widening of bandgap while TPD-based polymers may be designed to have lower bandgap with the minimum rise of HOMO level. Hence, the energy level tuning must be considered so as to minimize the adverse effect.  相似文献   

10.
Innovating molecular structure of copolymer donor materials is still one of the prominent approach to obtain high-performance polymer solar cells (PSCs). In this paper, two novel wide bandgap (WBG) copolymers, namely PBDTTS-IQ and PBDTTS-DFIQ, based on asymmetric planar aromatic core indo [( Li et al., 2012; Wang et al., 2020) 2,32,3-b]quinoxaline (IQ) as acceptor unit through tuning side chains with fluorine (F) atom engineering and exemplary alkylthio-thienyl substituted benzodithiophene (BDTTS) donor group, are synthesized and finally employed as the photovoltaic donor materials for fullerene polymer solar cells (PSCs). After blending with PC71BM acceptor, the PBDTTS-DFIQ:PC71BM blend film presented better efficient exciton dissociation and charge extraction, more balanced electron/hole mobility (μh/μe), and nice morphology in comparison with PBDTTS-IQ:PC71BM blend film. Encouragingly, the PBDTTS-DFIQ:PC71BM based PSCs exhibits a higher power conversion efficiency (PCE) of 7.4% than that of the device based on the PBDTTS-IQ:PC71BM blend with a PCE of 4.96%, which thanks to an enhancement of open-circuit voltage (Voc) of 0.84 V, short current density (Jsc) of 13.26 mA cm−2 and fill factor (FF) of 66.00% simultaneously. These results demonstrate that this asymmetric IQ framework is a wonderful acceptor moiety to build light-harvesting copolymers for highly efficient PSCs.  相似文献   

11.
A new method to synthesize an electron‐rich building block cyclopentadithienothiophene (9H‐thieno‐[3,2‐b]thieno[2″,3″:4′,5′]thieno[2′,3′:3,4]cyclopenta[1,2‐d]thiophene, CDTT) via a facile aromatic extension strategy is reported. By combining CDTT with 1,1‐dicyanomethylene‐3‐indanone endgroups, a promising nonfullerene small molecule acceptor (CDTTIC) is prepared. As‐cast, single‐junction nonfullerene organic solar cells based on PFBDB‐T: CDTTIC blends exhibit very high short‐circuit currents up to 26.2 mA cm?2 in combination with power conversion efficiencies over 11% without any additional processing treatments. The high photocurrent results from the near‐infrared absorption of the CDTTIC acceptor and the well‐intermixed blend morphology of polymer donor PFBDB‐T and CDTTIC. This work demonstrates a useful fused ring extension strategy and promising solar cell results, indicating the great potential of the CDTT derivatives as electron‐rich building blocks for constructing high‐performance small molecule acceptors in organic solar cells.  相似文献   

12.
In this communication, we designed two low bandgap D-A copolymers with same fluorinated thiadiazoloquinoxaline (TDQ) as acceptor and different donor units benzo[2,1-b;3,4-b′]dithiophene (P1) and benzo[1,2-b:4,5-b′]dithiophene (P2). P1 and P2 exhibit broad absorption profiles covering from 350 nm to 1150 nm and 350–950 nm, respectively with optical bandgaps of 1.06 eV and 1.18 eV, respectively. Both copolymers showed deep highest occupied molecular orbitals (HOMO), i.e. −5.38 eV and −5.26 eV, for P1 and P2. Their photovoltaic properties were evaluated using conventional devices with a structure of ITO/PEDOT:PSS/copolymer:PC71BM/Al. After the optimizations of the copolymer to PC71BM weight ratios, and concentration of the solvent additive (DIO), the devices showed overall power conversion efficiencies of 4.03% and 5.42% for the P1 and P2 based devices, respectively. The higher value of PCE of the P2 based device is attributed to the higher values of Jsc and FF, that is related to the higher hole mobility and better exciton dissociation efficiency. Although the PCEs of these devices are moderate, these ultra low band gap copolymers can be used for their potential application in tandem polymers solar cells. Finally, methanol treatment of the active layer was adopted to increase the PCE of the P2:PC71BM based polymer solar cells that resulted in an improved PCE up to 6.93%.  相似文献   

13.
Wide‐bandgap perovskite solar cells (PSCs) with optimal bandgap (Eg) and high power conversion efficiency (PCE) are key to high‐performance perovskite‐based tandem photovoltaics. A 2D/3D perovskite heterostructure passivation is employed for double‐cation wide‐bandgap PSCs with engineered bandgap (1.65 eV ≤ Eg ≤ 1.85 eV), which results in improved stabilized PCEs and a strong enhancement in open‐circuit voltages of around 45 mV compared to reference devices for all investigated bandgaps. Making use of this strategy, semitransparent PSCs with engineered bandgap are developed, which show stabilized PCEs of up to 25.7% and 25.0% in four‐terminal perovskite/c‐Si and perovskite/CIGS tandem solar cells, respectively. Moreover, comparable tandem PCEs are observed for a broad range of perovskite bandgaps. For the first time, the robustness of the four‐terminal tandem configuration with respect to variations in the perovskite bandgap for two state‐of‐the‐art bottom solar cells is experimentally validated.  相似文献   

14.
[6, 6]‐Phenyl‐C61‐butyric acid methyl ester (PC60BM) is the widely used acceptor material in polymer solar cells (PSCs). Nevertheless, the low LUMO energy level and weak absorption in visible region are its two weak points. For enhancing the solar light harvest, the soluble C70 derivative PC70BM has been used as acceptor instead of PC60BM in high efficiency PSCs in recent years. But, the LUMO level of PC70BM is the same as that of PC60BM, which is too low for the PSCs based on the polymer donors with higher HOMO level, such as poly (3‐hexylthiophene) (P3HT). Here, a new soluble C70 derivative, indene‐C70 bisadduct (IC70BA), is synthesized with high yield of 58% by a one‐pot reaction of indene and C70 at 180 °C for 72 h. The electrochemical properties and electronic energy levels of the fullerene derivatives are measured by cyclic voltammetry. The LUMO energy level of IC70BA is 0.19 eV higher than that of PC70BM. The PSC based on P3HT with IC70BA as acceptor shows a higher Voc of 0.84 V and higher power conversion efficiency (PCE) of 5.64%, while the PSC based on P3HT/PC60BM and P3HT/PC70BM displays Voc of 0.59 V and 0.58 V, and PCE of 3.55% and 3.96%, respectively, under the illumination of AM1.5G, 100 mW cm?2. The results indicate that IC70BA is an excellent acceptor for the P3HT‐based PSCs and could be a promising new acceptor instead of PC70BM for the high performance PSCs based on narrow bandgap conjugated polymer donor.  相似文献   

15.
A C2v-symmetric core, dithienocyclopentaspiro[fluorene-9,9′-xanthene], was used as the central block for the first time to design and synthesize A-D-A type small molecule acceptors for nonfullerene polymer solar cells (PSCs), and two new small molecule acceptors of TSFX-2F and TSFX-4F were synthesized based on the C2v-symmetric core. The two TSFX-based acceptors show high thermal stability, strong absorption in the wavelength region of 550–750 nm and appropriate energy levels. The PSCs with the broad bandgap polymer J71 as donor and TSFX-2F as acceptor demonstrated power conversion efficiency (PCE) of 9.42% with open circuit voltage (Voc) of 0.89 V, short circuit current density (Jsc) of 15.27 mA cm−2 and fill factor (FF) of 69.30%, while the PSC based on J71:TSFX-4F shows a PCE of 8.47% with Voc of 0.83 V, Jsc of 15.48 mA cm−2 and FF of 66.16%. The higher Voc of the PSC based on J71: TSFX-2F is benefitted from the up-shifted LUMO energy level of the TSFX-2F acceptor, and its higher FF can be ascribed to the higher and more balanced hole and electron mobilities of the J71: TSFX-2F active layer. This work demonstrates that the new C2v-symmetric building block is a promising central D-unit for the design and synthesis of new structured norfullerene acceptors for high-performance PSCs.  相似文献   

16.
A new wide bandgap polymer donor, PNDT‐ST, based on naphtho[2,3‐b:6,7‐b′]dithiophene (NDT) and 1,3‐bis(thiophen‐2‐yl)‐5,7‐bis(2‐ ethylhexyl)benzo[1,2‐c:4,5‐c′]dithiophene‐4,8‐dione (BDD) is developed for efficient nonfullerene polymer solar cells. To better match the energy levels, a new near infrared small molecule of Y6‐T is also developed. The extended π‐conjugation and less twist of PNDT‐ST provides it with higher crystallinity and stronger aggregation than the PBDT‐ST counterpart. The higher lowest occupied molecular orbital level of Y6‐T than Y6 favors the better energy level match with these polymers, resulting in improved open circuit voltage (Voc) and power conversion efficiency (PCE). The high crystallinity and strong aggregation of PNDT‐ST also induces large phase separation with poorer morphology, leading to lower fill factor and reduced PCE than PBDT‐ST. To mediate the crystallinity and optimize the morphology, PNDT‐ST and PBDT‐ST are blended together with Y6‐T, forming the ternary blend devices. As expected, the two compatible polymers allow continual optimization of the morphology by varying the blend ratio. The optimized ternary blend devices deliver a champion PCE as high as 16.57% with a very small energy loss (Eloss) of 0.521 eV. Such small Eloss is the best record for polymer solar cells with PCEs over 16% to date.  相似文献   

17.
To match with the state-the-art-of non-fullerene acceptor for polymer solar cells (PSCs), it is urgent to develop high performance wide-bandgap (WBG) copolymer donors with deep highest occupied molecular orbital (HOMO) level and highly planar backbone to further promote the device efficiency. A new WBG copolymer PBDTBTz, poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b′]dithi ophene))-alt-(5,5’-(-4,4’-dinonyl-2,2’-bithiazole))], which is based on benzodithiophene (BDT) as donor unit and 4,4’-dinonyl-2,2’-bithiazole (BTz) as acceptor unit is prepared for non-fullerene PSCs. Due to the strong electron-withdrawing effect, BTz unit can dramatically lower the HOMO level of PBDTBTz to −5.60 eV. Notably, double noncovalent conformational locks (N⋯S) of BTz are formed in the backbone to reduce the steric hindrance and favor a highly planar geometry for efficient charge transport and molecular packing. As a result, the device based on PBDTBTz as donor and 3,9-bis(2-methylene-((3-(1,1-dic-yanomethylene)-6,7-difluoro)-indanone))-5,5,11, 11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2′,3′-d']-s-indaceno[1,2-b:5,6-b']dithiophen e(IT-4F) as acceptor afforded a high open circuit voltage (Voc) of 0.92 V, which is the highest value for IT-4F-based PSCs reported so far. Furthermore, the device operated well with a negligible driving force (ΔEHOMO) of as small as 0.06 eV. These results revealed that combination of electron-withdrawing bithiazole and double noncovalent conformational lock of N⋯S is a promising molecular design concept of polymer donor with deep and planar structure for high performance PSCs.  相似文献   

18.
Despite the rapid development of nonfullerene acceptors (NFAs), the fundamental understanding on the relationship between NFA molecular architecture, morphology, and device performance is still lacking. Herein, poly[[4,8‐bis[5‐(2‐ethylhexyl)thiophene‐2‐yl]benzo[1,2‐b:4,5‐b0]dithiophene‐2,6‐diyl][3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl]‐thieno[3,4‐b]thiophenediyl]] (PTB7‐Th) is used as the donor polymer to compare an NFA with a 3D architecture (SF‐PDI4) to a well‐studied NFA with a linear acceptor–donor–acceptor (A–D–A) architecture (ITIC). The data suggest that the NFA ITIC with a linear molecular structure shows a better device performance due to an increase in short‐circuit current ( Jsc) and fill factor (FF) compared to the 3D SF‐PDI4. The charge generation dynamics measured by femtosecond transient absorption spectroscopy (TAS) reveals that the exciton dissociation process in the PTB7‐Th:ITIC films is highly efficient. In addition, the PTB7‐Th:ITIC blend shows a higher electron mobility and lower energetic disorder compared to the PTB7‐Th:SF‐PDI4 blend, leading to higher values of Jsc and FF. The compositional sensitive resonant soft X‐ray scattering (R‐SoXS) results indicate that ITIC molecules form more pure domains with reduced domain spacing, resulting in more efficient charge transport compared with the SF‐PDI4 blend. It is proposed that both the molecular structure and the corresponding morphology of ITIC play a vital role for the good solar cell device performance.  相似文献   

19.
One of the most promising approaches to achieve high‐performance polymer solar cells (PSCs) is to develop nonfullerene small molecule acceptors (SMAs) with an absorption extending to the near‐infrared (NIR) region. In this work, two novel SMAs, namely, BTTIC and BTOIC, are designed and synthesized, with optical bandgaps (Egopt) of 1.47 and 1.39 eV, respectively. Desipte the narrow Egopt, the PBDB‐T:BTTIC‐ and PBDB‐T:BTOIC‐based PSCs can maintain high VOCs of over 0.90 and 0.86 V, respectively, with low energy losses (Eloss) < 0.6 eV. Meanwhile, due to the favorable morphology of the PBDB‐T:BTTIC blend, balanced carrier mobilities are achieved. The high external quantum efficiencies enable a high power conversion efficiency (PCE) up to 13.18% for the PBDB‐T:BTTIC‐based PSCs. In comparison, BTOIC shows an excessive crystallization propensity owing to its oxyalkyl side groups, which eventually leads to a relatively low PCE for the PBDB‐T:BTOIC‐based PSCs. Overall, this work provides insights into the design of novel NIR‐absorbing SMAs for nonfullerene PSCs.  相似文献   

20.
Two donor–acceptor (D−A) copolymers, PEHBDT-BTz and PODBDT-BTz, containing the same backbone of benzodithiophene (BDT) and bithiazole (BTz) units but different side chains were designed and synthesized. Effects of the side chains of BDT and BTz units on solubility, absorption spectra, energy levels, film morphology, and photovoltaic properties of the polymers were investigated. Results showed that the more branched side chains could increase the molecular weight and the introduction of alkylthienyl groups into BTz unit benefits to broaden the absorption and lower the bandgaps as well as deepen HOMO levels, which are propitious to improve the short-circuit current density (Jsc) and open-circuit voltage (Voc) of photovoltaic cells. Polymer solar cells (PSCs) were prepared with the polymers as electron donors and PCBM as an acceptor. The device fabrication conditions, including the additive, the different acceptor and blend ratio of the polymer donor and acceptor, have been optimized. PCE of PSCs based on the copolymers varied from 2.92% for PODBDT-BTz to 3.71% for PEHBDT-BTz, depending on the type and topology of the side chains on the BDT moiety. The results indicate that an appropriate choice of side chains on the backbone is an effective way to improve photovoltaic performance of the related PSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号