首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Selective gas sensing is of immense importance for industrial as well as safety purposes. Here it is shown that metallic 1T phase transition metal dichalcogenides, such as tungsten sulfide (WS2), provide sensitive and selective platform for gas sensing. Using impedance spectroscopy distinguishable alterations can be detected on the impedance phase spectrum of interdigitated gold electrode modified with chemically exfoliated 1T‐WS2 caused by different vapors. In particular, it is found that the impedance phase spectra of 1T‐WS2 device present different resonant frequencies with maximum around 1 Hz in the presence of methanol vapor and around 1 kHz in the presence of water vapor. Such a well‐distinguished signal allows their selective detection also when they are present in a mixture. The impedance phase spectra allow the selective methanol and water vapor sensing with an impedimetric device based on 1T‐WS2. This system utilizing 1T phase of WS2 for selective gas sensing based on impedance spectroscopy opens new avenues for gas sensing and shall find wide spectra of applications.  相似文献   

2.
Edges of 2D transition metal dichalcogenides (TMDs) are well known as highly reactive sites, thus researchers have attempted to maximize the edge site density of 2D TMDs. In this work, metal‐organic framework (MOF) templates are introduced to synthesize few‐layered WS2 nanoplates (a lateral dimension of ≈10 nm) confined in Co, N‐doped hollow carbon nanocages (WS2_Co‐N‐HCNCs), for highly sensitive NO2 gas sensors. WS2 precursors are assembled in the surface cavity of Co‐based zeolite imidazole framework (ZIF‐67) and subsequent pyrolysis produced WS2_Co‐N‐HCNCs. During the pyrolysis, the carbonized ZIF‐67 are doped by Co and N elements, and the growth of WS2 is effectively suppressed, creating few‐layered WS2 nanoplates functionalized Co‐N‐HCNCs. The WS2_Co‐N‐HCNCs exhibit outstanding NO2 sensing characteristics at room temperature, in terms of response (48.2% to 5 ppm), selectivity, response and recovery speed, and detection limit (100 ppb). These results are attributed to the enhanced adsorption and desorption kinetics of NO2 on abundant WS2 edges, confined in the gas permeable HCNCs. This work opens up an efficient way for the facile synthesis of edge abundant few‐layered TMDs combined with porous carbon matrix via MOF templating route, for applications relying on highly active sites.  相似文献   

3.
2D layered 3‐rhombohedral (3R) phase transition metal dichalcogenides (TMDs) have received significantly increased research interest in nonlinear optical applications due to their unique crystal structures and broken inversion symmetry. However, controlled growth of 2D 3R phase TMDs still remains a great challenge. In this work, a direct growth of large‐area WS2 and WSe2 atomic layers with controllable crystal phases via a developed temperature selective physical vapor deposition route is reported. Large‐area triangular 3R phase layers are synthesized at a lower deposition temperature. Steady state and time‐resolved photoluminescence spectroscopy and Raman spectroscopy are used to study the unique properties of 3R phase layers due to different layer stacking and interlayer coupling. More importantly, with broken inversion symmetry, 3R phase layers show a quadratically increased second harmonic generation (SHG) intensity with respect to layer numbers. Furthermore, by polarization‐resolved SHG, a uniform polarization preference is observed in bilayer and trilayer 3R phase WS2, which could be a benefit for practical applications. The results not only contribute to the controlled growth of 2D TMDs layers with different phases but also pave the way to promising nonlinear optical devices.  相似文献   

4.
While liquid phase exfoliation can be used to produce nanosheets stabilized in polymer solutions, very little is known about the resultant nanosheet size, thickness, or monolayer content. The present study uses semiquantitative spectroscopic metrics based on extinction, Raman, and photoluminescence (PL) spectroscopy to investigate these parameters for WS2 nanosheets exfoliated in aqueous poly(vinyl alcohol) (PVA) solutions. By measuring Raman and PL simultaneously, the monolayer content can be tracked via the PL/Raman intensity ratio while varying processing conditions. The PL is found to be maximized for a stabilizing polymer concentration of 2 g L?1. In addition, the monolayer content can be controlled via the centrifugation conditions, exceeding 5% by mass in some cases. These techniques have allowed tracking the ratio of PL/Raman in a droplet of polymer‐stabilized WS2 nanosheets as the water evaporates during composite formation. No evidence of nanosheet aggregation is found under these conditions although the PL becomes dominated by trion emission as drying proceeds and the balance of doping from PVA/water changes. Finally, bulk PVA/WS2 composites are produced by freeze drying where >50% of the monolayers remain unaggregated, even at WS2 volume fractions as high as 10%.  相似文献   

5.
2D H‐phase vanadium disulfide (VS2) is expected to exhibit tunable semiconductor properties as compared with its metallic T‐phase structure, and thus is of promise for future electronic applications. However, to date such 2D H‐phase VS2 nanostructures have not been realized in experiment likely due to the polymorphs of vanadium sulfides and thermodynamic instability of H‐phase VS2. Preparation of H‐phase VS2 monolayer with lateral size up to 250 µm, as a new member in the 2D transition metal dichalcogenides (TMDs) family, is reported. A unique growth environment is built by introducing the molten salt‐mediated precursor system as well as the epitaxial mica growth platform, which successfully overcomes the aforementioned growth challenges and enables the evolution of 2D H‐phase structure of VS2. The honeycomb‐like structure of H‐phase VS2 with broken inversion symmetry is confirmed by spherical aberration‐corrected scanning transmission electron microscopy and second harmonic generation characterization. The phase structure is found to be ultra‐stable up to 500 K. The field‐effect device study further demonstrates the p‐type semiconducting nature of the 2D H‐phase VS2. The study introduces a new phase‐stable 2D TMDs materials with potential features for future electronic devices.  相似文献   

6.
2D metals have attracted considerable recent attention for their special physical properties, such as charge density waves, magnetism, and superconductivity. However, despite some recent efforts, the synthesis of ultrathin 2D metals nanosheets down to monolayer thickness remains a significant challenge. Herein, by using atomically flat 2D WSe2 or WS2 as the growth substrate, the synthesis of atomically thin 2D metallic MTe2 (M = V, Nb, Ta) single crystals with the thickness down to the monolayer regime and the creation of atomically thin MTe2/WSe2 (WS2) vertical heterojunctions is reported. Comparison with the growth on the SiO2/Si substrate under the same conditions reveals that the utilization of the dangling‐bond‐free WSe2 or WS2 as the van der Waals epitaxy substrates is crucial for the successful realization of atomically thin MTe2 (M = V, Nb, Ta) nanosheets. It is further shown that the epitaxial grown 2D metals can function as van der Waals contacts for 2D semiconductors with little interface damage and improved electronic performance. This study defines a robust van der Waals epitaxy pathway to ultrathin 2D metals, which is essential for fundamental studies and potential technological applications of this new class of materials at the 2D limit.  相似文献   

7.
2D transition metal chalcogenides (TMDs) with different compositions, phase structures, and properties offer giant opportunities for building novel 2D lateral heterostructures. However, the studies to date have been largely limited to homophase TMD heterostructures, while the construction of heterophase TMD heterostructures remains a challenge. Herein, the synthesis of 2H‐1T′ WS2‐ReS2 heterophase junctions with high‐quality interface structure via a hydrogen‐triggered one‐pot growth approach is reported. Sequential introduction of hydrogen during growth system, which acts as a “switch” to selectively turn off the growth of ReS2 while turning on the growth of WS2, allows WS2 to seamlessly grow around ReS2 to form the WS2‐ReS2 heterojunction. Moreover, WS2 prefers to nucleate at the vertices of ReS2 grain with fixed lattice orientation, which makes the surrounding WS2 grains merge into single crystal. Scanning transmission electron microscopy reveals high crystal quality of the heterojunction with an atomically sharp 2H‐1T′ heterophase interface. Transient absorption spectroscopy indicates that the photocarriers can effectively separate at the heterophase interface. Based on the high quality heterophase junction, prominent rectification characteristics and polarization‐dependent photodiode properties are achieved. This study provides a robust way for the controlled synthesis of 2D heterophase structures, which is essential for their fundamental studies and device applications.  相似文献   

8.
9.
Few‐layered films of WS2, synthesized by chemical vapor deposition on quartz, are successfully used as light sensors. The film samples are structurally characterized by Raman spectroscopy, atomic force microscopy, scanning electron microscopy, and high‐resolution transmission electron microscopy. The produced samples consist of few layered sheets possessing up to 10 layers. UV–visible absorbance spectra reveals absorption peaks at energies of 1.95 and 2.33 eV, consistent with the A and B excitons characteristic of WS2. Current–voltage (IV) and photoresponse measurements carried out at room temperature are performed by connecting the WS2 layered material with Au/Ti contacts. The photocurrent measurements are carried out using five different laser lines ranging between 457 and 647 nm. The results indicate that the electrical response strongly depends on the photon energy from the excitation lasers. In addition, it is found that the photocurrent varies non‐linearly with the incident power, and the generated photocurrent in the WS2 samples varies as a squared root of the incident power. The excellent response of few‐layered WS2 to detect different photon wavelengths, over a wide range of intensities, makes it a strong candidate for constructing novel optoelectronic devices.  相似文献   

10.
Strain‐dependent electrical and optical properties of atomically thin transition metal dichalcogenides may be useful in sensing applications. However, the question of how strain relaxes in atomically thin materials remains not well understood. Herein, the strain relaxation of triangular WS2 deposited on polydimethylsiloxane substrate is investigated. The photoluminescence of trions (X) and excitons (X0) undergoes linear redshifts of ≈20 meV when the substrate tensile strain increases from 0 to 0.16. However, when the substrate strain further increases from 0.16 to 0.32, the redshifts cease due to strain relaxation in WS2. The strain relaxation occurs through formation of wrinkles in the WS2 crystal. The pattern of wrinkles is found to be dependent on the relative angle between an edge of the triangular WS2 crystal and tensile strain direction. Finite element simulations of the strain distribution inside the WS2 crystals explain the experimental observations.  相似文献   

11.
Defects and their spatial distribution are crucial factors in controlling the electronic and optical properties of semiconductors. By using scanning transmission electron microscopy and electron energy loss spectroscopy, the type of impurities/defects in WS2 subdomains with different optical properties is successfully assigned. A higher population of Cr impurities is found in the W‐terminated edge domain, while the S‐terminated domain contains more Fe impurities, in accordance with the luminescence characteristics of chemical‐vapor‐grown WS2 of a hexagonal shape. In agreement with the first‐principles calculations, the domains with Cr substitutional dopants exhibit strong trion emission. Fe atoms tend to gather into trimer configuration and introduce deep acceptor levels which compensate the n‐type doping and suppress trion emission. It is also discovered that the domain with higher luminescence but smaller defect concentration tends to get oxidized more rapidly and degrade the 2D structure with many triangular holes. Excitons tend to accumulate at the edges of the oxidized triangular holes and results in enhanced PL emission. The findings indicate that choosing stable elements as dopant and controlling the number of specific edge structures within a crystal domain of 2D transitional metal dichalcogenides can be a new route to improve the optical properties of these materials.  相似文献   

12.
13.
Mono‐ and few‐layer transition metal dichalcogenides (TMDCs) have been widely used as saturable absorbers for ultrashort laser pulse generation, but their preparation is complicated and requires much expertise. The possible use of bulk‐structured TMDCs as saturable absorbers is therefore a very intriguing and technically important issue in laser technology. Here, for the first time, it is demonstrated that defective, bulk‐structured WTe2 microflakes can serve as a base saturable absorption material for fast mode‐lockers that can produce femtosecond pulses from fiber laser cavities. They have a modulation depth of 2.85%, from which stable laser pulses with a duration of 770 fs are readily obtained at a repetition rate of 13.98 MHz and a wavelength of 1556.2 nm, which is comparable to the performance achieved using mono‐ and few‐layer TMDCs. Density functional theory calculations show that the oxidative and defective surfaces of WTe2 microflakes do not degrade their saturable absorption performance in the near‐infrared range, allowing for a broad range of operative bandwidth. This study suggests that saturable absorption is an intrinsic property of TMDCs without relying on their structural dimensionality, providing a new direction for the development of TMDC‐based saturable absorbers.  相似文献   

14.
WS2 nanoparticles are prepared using bipolar electrochemistry. Obtained material exhibits high activity for hydrogen evolution reaction (HER) and it is used as a label in standard magneto‐immunosandwich assay for protein detection through HER. This new system shows high analytical performance in terms of a wide range, selectivity, sensitivity, and reproducibility.  相似文献   

15.
Presently, research in layered transition metal dichalcogenides (TMDs) for numerous electrochemical applications have largely focused on Group 6 TMDs, especially MoS2 and WS2, whereas TMDs belonging to other groups are relatively unexplored. This work unravels the electrochemistry of Group 10 TMDs: specifically PtS2, PtSe2, and PtTe2. Here, the inherent electroactivities of these Pt dichalcogenides and the effectiveness of electrochemical activation on their charge transfer and electrocatalytic properties are thoroughly examined. By performing density functional theory (DFT) calculations, the electrochemical and electrocatalytic behaviors of the Pt dichalcogenides are elucidated. The charge transfer and electrocatalytic attributes of the Pt dichalcogenides are strongly associated with their electronic structures. In terms of charge transfer, electrochemical activation has been successful for all Pt dichalcogenides as evident in the faster heterogeneous electron transfer (HET) rates observed in electrochemically reduced Pt dichalcogenides. Interestingly, the hydrogen evolution reaction (HER) performance of the Pt dichalcogenides adheres to a trend of PtTe2 > PtSe2 > PtS2 whereby the HER catalytic property increases down the chalcogen group. Importantly, the DFT study shows this correlation to their electronic property in which PtS2 is semiconducting, PtSe2is semimetallic, and PtTe2 is metallic. Furthermore, Pt dichalcogenides are effectively activated for HER. Distinct electronic structures of Pt dichalcogenides account for their different responses to electrochemical activation. Among all activated Pt dichalcogenides, PtS2 shows most accentuated improvement as a HER electrocatalyst with an exceptional 50% decline in HER overpotential. Knowledge on Pt dichalcogenides provides valuable insights in the field of TMD electrochemistry, in particular, for the currently underrepresented Group 10 TMDs.  相似文献   

16.
The very recently rediscovered group‐10 transition metal dichalcogenides (TMDs) such as PtS2 and PtSe2, have joined the 2D material family as potentially promising candidates for electronic and optoeletronic applications due to their theoretically high carrier mobility, widely tunable bandgap, and ultrastability. Here, the first exploration of optoelectronic application based on few‐layered PtS2 using h‐BN as substrate is presented. The phototransistor exhibits high responsivity up to 1.56 × 103 A W?1 and detectivity of 2.9 × 1011 Jones. Additionally, an ultrahigh photogain ≈2 × 106 is obtained at a gate voltage V g = 30 V, one of the highest gain among 2D photodetectors, which is attributed to the existence of trap states. More interestingly, the few‐layered PtS2 phototransistor shows a back gate modulated photocurrent generation mechanism, that is, from the photoconductive effect dominant to photogating effect dominant via tuning the gate voltage from the OFF state to the ON state. Such good properties combined with gate‐controlled photoresponse of PtS2 make it a competitive candidate for future 2D optoelectronic applications.  相似文献   

17.
The 2D semiconductor MoS2 in its mono‐ and few‐layer form is expected to have a significant exciton binding energy of several 100 meV, suggesting excitons as the primary photoexcited species. Nevertheless, even single layers show a strong photovoltaic effect and work as the active material in high sensitivity photodetectors, thus indicating efficient charge carrier photogeneration. Here, modulation spectroscopy in the sub‐ps and ms time scales is used to study the photoexcitation dynamics in few‐layer MoS2. The results suggest that the primary photoexcitations are excitons that efficiently dissociate into charges with a characteristic time of 700 fs. Based on these findings, simple suggestions for the design of efficient MoS2 photovoltaic and photodetector devices are made.  相似文献   

18.
19.
Emerging classes of 2D noble‐transition‐metal dichalcogenides (NTMDs) stand out for their unique structure and novel physical properties in recent years. With the nearly full occupation of the d orbitals, 2D NTMDs are expected to be more attractive due to the unique interlayer vibrational behaviors and largely tunable electronic structures compared to most transition metal dichalcogenide semiconductors. The novel properties of 2D NTMDs have stimulated various applications in electronics, optoelectronics, catalysis, and sensors. Here, the latest development of 2D NTMDs are reviewed from the perspective of structure characterization, preparation, and application. Based on the recent research, the conclusions and outlook for these rising 2D NTMDs are presented.  相似文献   

20.
Research on wearable sensing technologies has been gaining considerable attention in the development of portable bio‐monitoring devices for personal health. However, traditional energy storage systems with defined size and shape have inherent limitations in satisfying the performance requirements for flexible electronics. To overcome this constraint, three different configurations of flexible asymmetric supercapacitor (FASC) are fabricated on polyester/cellulose blend (PCB) cloth substrate using Ti3C2 nanosheet (NS) and 1T WS2 NS as electrodes, and aqueous pluronic gel as an electrolyte. Benefiting from the 2D material electrodes, the interdigitated FASC configuration exhibits excellent performance, flexibility, cyclic stability, wearability and can be configured into multiple units and shapes, which far exceed that exhibited by the textile‐based FASC. Furthermore, the arbitrary (“AFN”) and sandwich (“FLOWER”) configurations Ti3C2 NS/1T WS2 NS FASC can be assembled directly on a PCB cloth substrate, thereby offering good structural integrity coupled with ease of assembly into integrated circuits of different shapes. More specifically, a lightweight, flexible, and wearable bio‐monitoring system is developed by integrating force sensing device with interdigitated FASC, which can be used to monitor the physical status of human body during various activities. A potential application of this system in healthcare is successfully demonstrated and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号