首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The advancement of a naturally rich and effective bifunctional substance for hydrogen and oxygen evolution reaction is crucial to enhance hydrogen fuel production efficiency via the electrolysis process. Herein, facile and scalable hydrothermal synthesis of bifunctional electrocatalyst of polyoxometalate anchored zinc cobalt sulfide nanowire on Ni-foam (NF) for overall water splitting is reported for the first time. The electrochemical analysis of POM@ZnCoS/NF displays significantly low HER and OER overpotentials of 170/337 and 200/300 mV to attain a current density of 10/40 and 20/50 mA cm−2, respectively, demonstrating the notable performance of POM@ZnCoS/NF toward H2 and O2 evolution reaction in alkaline medium. Additionally, the electrolyzer consisting of the POM@ZnCoS/NF anode and cathode shows an appealing potential of 1.56 V to deliver 10 mA cm−2 current density for overall water splitting. The high electrocatalytic activity of the POM@ZnCoS/NF is attributed to modulation of the electronic and chemical properties, increment of the electroactive sites and electrochemically active surface area of the zinc cobalt sulfide nanowires due to the anchorage of polyoxometalate nanoparticles. These results demonstrate the advantage of the polyoxometalate incorporation strategy for the design of cost-effective and highly competent bifunctional catalysts for complete water splitting.  相似文献   

2.
The facile preparation of highly porous, manganese doped, sponge‐like nickel materials by salt melt synthesis embedded into nitrogen doped carbon for electrocatalytic applications is shown. The incorporation of manganese into the porous structure enhances the nickel catalyst's activity for the hydrogen evolution reaction in alkaline solution. The best catalyst demonstrates low onset overpotential (0.15 V) for the hydrogen evolution reaction along with high current densities at higher potentials. In addition, the possibility to alter the electrocatalytic properties of the materials from the hydrogen to oxygen evolution reaction by simple surface oxidation is shown. The surface area increases up to 1200 m2g?1 after mild oxidation accompanied by the formation of nickel oxide on the surface. A detailed analysis shows a synergetic effect of the oxide formation and the material's surface area on the catalytic performance in the oxygen evolution reaction. In addition, the synthesis of cobalt doped sponge‐like nickel materials is also delineated, demonstrating the generality of the synthesis. The facile salt melt synthesis of such highly porous metal based materials opens new possibilities for the fabrication of diverse electrode nanostructures for electrochemical applications.  相似文献   

3.
Challenges in rational designing dual-atom catalysts (DACs) give a strong motivation to construct coordination-activity correlations. Here, thorough coordination-activity correlations of DACs based on how the changes in coordination shells (CSs) of dual-atom Cu,Co centers influence their electrocatalytic activity in oxygen reduction reaction(ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER) is constructed. First, Cu,Co DACs with different CSs modifications are fabricated by using a controlled “precursors-preselection” approach. Three DACs with unique coordination environments are characterized as secondary S atoms that directly bond to Cu,Co-N6 in lower CSs, indirectly bond in neighboring CSs, and are doped in higher CSs, respectively. Then, experimentally and theoretically, a coordination correlation resembling a planet-satellite system, where satellite coordinated atoms (heteroatom N, S) surround Cu-Co dual-atom entity in various orbitals CSs. By evaluating electrocatalytic activity indicators, differences are identified in electronic structure and electrocatalytic performance of Cu and Co centers in ORR, OER, and HER. Interestingly, initial CSs modifications for DACs may not always be advantageous for electrocatalysis. This work offers valuable insight for designing DACs for diverse applications.  相似文献   

4.
Seawater electrolysis under alkaline conditions presents an attractive alternative to traditional freshwater electrolysis for mass sustainable high-purity hydrogen production. However, the lack of active and robust electrocatalysts severely impedes the industrial application of this technology. Herein, carbon-doped nanoporous cobalt phosphide (C-Co2P) prepared by electrochemical dealloying is reported as an electrocatalyst for hydrogen evolution reaction (HER). The C-Co2P achieves an overpotential of 30 mV at a current density of 10 mA cm−2 in 1 m KOH, along with impressive catalytic activity and stability at large current densities in artificial alkaline seawater electrolyte containing mixed chlorides of NaCl, MgCl2, and CaCl2. Experimental analysis and density functional theory calculations reveal that the C atom with strong electronegativity and small atomic radius can tailor the electronic structure of Co2P, leading to weakened Co–H bonding toward promoted HER kinetics. Moreover, the C doping introduces a two-stepped H delivery pathway by forming C–Had intermediate, thus reducing the energy barrier of water dissociation. This study offers a new vision toward the development of seawater electrolysis for large-scale hydrogen production.  相似文献   

5.
Cobalt sulfide materials have attracted enormous interest as low‐cost alternatives to noble‐metal catalysts capable of catalyzing both oxygen reduction and oxygen evolution reactions. Although recent advances have been achieved in the development of various cobalt sulfide composites to expedite their oxygen reduction reaction properties, to improve their poor oxygen evolution reaction (OER) activity is still challenging, which significantly limits their utilization. Here, the synthesis of Fe3O4‐decorated Co9S8 nanoparticles in situ grown on a reduced graphene oxide surface (Fe3O4@Co9S8/rGO) and the use of it as a remarkably active and stable OER catalyst are first reported. Loading of Fe3O4 on cobalt sulfide induces the formation of pure phase Co9S8 and highly improves the catalytic activity for OER. The composite exhibits superior OER performance with a small overpotential of 0.34 V at the current density of 10 mA cm?2 and high stability. It is believed that the electron transfer trend from Fe species to Co9S8 promotes the breaking of the Co–O bond in the stable configuration (Co–O–O superoxo group), attributing to the excellent catalytic activity. This development offers a new and effective cobalt sulfide‐based oxygen evolution electrocatalysts to replace the expensive commercial catalysts such as RuO2 or IrO2.  相似文献   

6.
Development of oxygen evolution reaction (OER) catalysts with reduced precious metal content while enhancing catalytic performance has been of pivotal importance in cost‐effective design of acid polymer electrolyte membrane water electrolyzers. Hollow multimetallic nanostructures with well‐defined facets are ideally suited for saving the usage of expensive precious metals as well as boosting catalytic performances; however, Ir‐based hollow nanocatalysts have rarely been reported. Here, a very simple synthetic scheme is reported for the preparation of hollow octahedral nanocages of Co‐doped IrCu alloy with readily tunable morphology and size. The Co‐doped IrCu octahedral nanocages show excellent electrocatalytic activity and long‐term durability for OER in acidic media. Notably, their OER activity represents one of the best performances among Ir‐based acidic OER catalysts.  相似文献   

7.
Halide perovskite like methylammonium lead iodide perovskite (MAPbI3) with its prominent optoelectronic properties has triggered substantial concerns in photocatalytic H2 evolution. In this work, to attain preferable photocatalytic performance, a MAPbI3/cobalt phosphide (CoP) hybrid heterojunction is constructed by a facile in situ photosynthesis approach. Systematic investigations reveal that the CoP nanoparticle can work as co‐catalyst to not only extract photogenerated electrons effectively from MAPbI3 to improve the photoinduced charge separation, but also facilitate the interfacial catalytic reaction. As a result, the as‐achieved MAPbI3/CoP hybrid displays a superior H2 evolution rate of 785.9 µmol h?1 g?1 in hydroiodic acid solution within 3 h, which is ≈8.0 times higher than that of pristine MAPbI3. Furthermore, the H2 evolution rate of MAPbI3/CoP hybrid can reach 2087.5 µmol h?1 g?1 when the photocatalytic reaction time reaches 27 h. This study employs a facile in situ photosynthesis strategy to deposit the metal phosphide co‐catalyst on halide perovskite nanocrystals to conduct photocatalytic H2 evolution reaction, which may stimulate the intensive investigation of perovskite/co‐catalyst hybrid systems for future photocatalytic applications.  相似文献   

8.
Although Pd is a potential substitution of Pt-based catalysts for the hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR), the binding of *H and oxygenated (*O, *OOH, *OH) intermediates on Pd are stronger than on Pt, leading to its inferior activity for HER and ORR. In this work, CuPd/Pd core/shell nanoparticles with an ultrathin Pd shell (0.5 nm) are developed, which demonstrate the Pt-like bifunctional activity for HER and ORR in acid electrolytes. The overpotential at 350 mA cm−2 for HER and the half-wave potential for ORR on the optimal CuPd/Pd core/shell NPs are 76 mV and 0.854 V versus reversible hydrogen electrode (RHE), respectively, which are comparable to that of Pt and among the best of the reported Pd-based catalysts. Density functional theory calculations indicate that the significantly enhanced HER/ORR activity on CuPd/Pd core/shell NPs with 0.5 nm Pd shell stem from the compressive strain induced downshift of d-band center for Pd (by 2.0%), which weakens the binding strength of *H and oxygenated intermediates and promotes the reaction kinetics.  相似文献   

9.
Sulfion oxidation reaction holds great potential for replacing kinetically sluggish water oxidation to save power consumption and simultaneously purifying environmental sulfion-rich sewage. However, it is still challenged by the insufficient mechanism understanding and questionable stability caused by sulfur passivation. Here, it is demonstrated that bifunctional Co3S4 nanowires for assembling hybrid seawater electrolyzer that combines anodic sulfion oxidation and cathodic seawater reduction with an ultra-low power consumption of 1.185 kWh m−3 H2 under 100 mA cm−2, saving energy consumption over 70% compared to the traditional water splitting system. Unlike water is oxidized into O2 at high potentials under alkaline water splitting system, experiments combined with in situ characterizations uncover the stepwise oxidation of S2− to short-chain polysulfides and then to value-added product of S8. Density functional theory calculations prove that Co3S4 possesses reduced energy barriers in the rate-determining S32− to S4 oxidation step and S8 desorption step, promoting conversion of short-chain polysulfides and efficient desorption of S8. These findings reveal the catalytic mechanism of sulfion oxidation and inspire an economic approach toward the fabrication of bifunctional Co3S4 for achieving energy-saving hydrogen production from seawater while rapidly disposing sulfion-rich sewage with boosted activity and stability.  相似文献   

10.
A recent approach for solar‐to‐hydrogen generation has been water electrolysis using efficient, stable, and inexpensive bifunctional electrocatalysts within strong electrolytes. Herein, the direct growth of 1D NiCo2S4 nanowire (NW) arrays on a 3D Ni foam (NF) is described. This NiCo2S4 NW/NF array functions as an efficient bifunctional electrocatalyst for overall water splitting with excellent activity and stability. The 3D‐Ni foam facilitates the directional growth, exposing more active sites of the catalyst for electrochemical reactions at the electrode–electrolyte interface. The binder‐free, self‐made NiCo2S4 NW/NF electrode delivers a hydrogen production current density of 10 mA cm–2 at an overpotential of 260 mV for the oxygen evolution reaction and at 210 mV (versus a reversible hydrogen electrode) for the hydrogen evolution reaction in 1 m KOH. This highly active and stable bifunctional electrocatalyst enables the preparation of an alkaline water electrolyzer that could deliver 10 mA cm–2 under a cell voltage of 1.63 V. Because the nonprecious‐metal NiCo2S4 NW/NF foam‐based electrodes afford the vigorous and continuous evolution of both H2 and O2 at 1.68 V, generated using a solar panel, they appear to be promising water splitting devices for large‐scale solar‐to‐hydrogen generation.  相似文献   

11.
Efficient hydrogen production from electrochemical overall water splitting requires high-performance electrocatalysts for hydrogen evolution reaction (HER) and a fast oxidation reaction to replace sluggish oxygen evolution reaction. Herein, Co-doped Rh nanoparticles are thus grown on carbon black using Co nanosheets as the bridge. These nanoparticles with a size of ≈1.94 nm exhibit the overpotential of as low as 2 mV at 10 mA cm−2 for the HER, and a mass activity of as high as 889 mA mg−1 for the methanol oxidation reaction (MOR) in alkaline media. As confirmed by density functional theory simulations, such excellent activity originates from Co-doping, which reduces reaction energy barriers for both the rate-determining step of a Volmer process during the HER and the conversion of *CO to COOH* during the MOR (namely the enhanced adsorption of H2O and COOH*). Coupling boosted HER on the cathode with accelerated MOR on the anode, efficient H2 generation is achieved. This two-electrode cell only requires a cell voltage of 1.545 V at 10 mA cm−2 with impressive long-life cycling stability. Such performance even outperforms that of commercial Pt/C || IrO2 cell. This study offers a new strategy to achieve efficient HER from overall water splitting.  相似文献   

12.
The development of electrocatalysts for the oxygen evolution reaction (OER) especially in acidic media remains the major challenge that still requires significant advances, both in material design and mechanistic exploration. In this study, the incorporation of cobalt in Y2-xCoxRu2O7−δ results in an ultrahigh OER activity because of the charge redistribution at eg orbitals between Ru and Co atoms. The Y1.75Co0.25Ru2O7−δ electrocatalyst exhibits an extremely small overpotential of 275 mV in 0.5 m H2SO4 at the current density of 10 mA cm−2, which is smaller than that of parent Y2Ru2O7−δ (360 mV) and commercial RuO2 (286 mV) catalysts. The systematic investigation of the composition related to OER activity shows that the Co substitution will also bring other effective changes, such as reducing the bandgap, and creating oxygen vacancies, which result in fast OER charge transfer. Meanwhile, the strengthening of the bond hybridization between the d orbitals of metal (Y and Ru) and the 2p orbitals of O will intrinsically enhance the chemical stability. Finally, theoretical calculations indicate that cobalt substitution reduces the theoretical overpotential both through an adsorbate evolution mechanism and a lattice oxygen-mediated mechanism.  相似文献   

13.
Advances demonstrate that the incorporation of phosphorous into the network of nitrogen, sulfur, or fluorine‐doped carbon materials can remarkably enhance their oxygen and hydrogen evolution activities. However, the electrocatalytic behaviors of pristine phosphorous single‐doped carbon catalysts toward the oxygen and hydrogen evolution reactions (OER and HER) are rarely investigated and their corresponding active species are not yet explored. To clearly ascertain the effects of phosphorous doping on the OER and HER and identify the active sites, herein, phosphorous unitary‐doped graphite layers with different phosphorous species distributions are prepared and the correlations between the oxygen or hydrogen evolution activity and different phosphorous species are investigated, respectively. Results indicate that phosphorous single‐doped graphite layers show a superior oxygen evolution activity to most of the reported OER catalysts and the commercial IrO2 in alkaline medium, and comparable hydrogen evolution activity to most reported carbon catalysts in acidic medium. Moreover, the relevancies unveil that the C? O? P species are the main OER active species, and the defects derived from the decomposition of C3? P = O species are the main active sites for HER, as evidenced by density functional theory calculations, showing a new perspective for the design of more effective phosphorous‐containing water‐splitting catalysts.  相似文献   

14.
Taking advantage of the self‐assembling function of amino acids, cobalt–alanine complexes are synthesized by straightforward process of chemical precipitation. Through a controllable calcination of the cobalt–alanine complexes, N‐doped Co3O4 nanostructures (N‐Co3O4) and N‐doped CoO composites with amorphous carbon (N‐CoO/C) are obtained. These N‐doped cobalt oxide materials with novel porous nanostructures and minimal oxygen vacancies show a high and stable activity for the oxygen evolution reaction. Moreover, the influence of calcination temperature, electrolyte concentration, and electrode substrate to the reaction are compared and analyzed. The results of experiments and density functional theory calculations demonstrate that N‐doping promotes the catalytic activity through improving electronic conductivity, increasing OH? adsorption strength, and accelerating reaction kinetics. Using a simple synthetic strategy, N‐Co3O4 reserves the structural advantages of micro/nanostructured complexes, showing exciting potential as a catalyst for the oxygen evolution reaction with good stability.  相似文献   

15.
16.
Novel earth-abundant metal sulfate-containing high entropy sulfides, FeNiCoCrXS2 (where X = Mn, Cu, Zn, or Al), are synthesized via a two-step solvothermal method. It is shown that sulfate-containing FeNiCoCrMnS2 exhibits superior oxygen evolution reaction (OER) activity with an exceptionally low overpotential of 199, 246, 285, and 308 mV at current densities of 10, 100, 500, and 1000 mA cm–2, respectively, and surpassing its unary-, binary-, ternary-, and quaternary-metal counterparts. The electrocatalyst yields exceptional stability after 12 000 cycles and 55 h of durability even at a high current density of 500 mA cm–2. Various in situ and ex situ analyses are used to investigate the self-reconstruction of the sulfides during the OER for the first time. The resulting metal (oxy)hydroxide is believed to be the true active center for OER. The remaining sulfate also contributes to the catalytic activity. Density function theory calculation is in good agreement with the experimental result. The extraordinary OER performance of the high entropy sulfide brings a great opportunity for desirable catalyst design for practical applications.  相似文献   

17.
以先水热后硫化的方法制备出基于石墨毡基底的镍钴基化合物(NiCo2O4/GF和NiCo2 S4/GF)电极,探究不同水热温度对电极的催化特性的影响.通过扫描电子显微镜(SEM)、能量色散X射线光谱仪(EDS)、X射线衍射仪(XRD)和X射线光电子能谱仪(XPS)对样品表面形貌、结构、晶向及元素分布进行分析.通过循环伏安...  相似文献   

18.
Molybdenum disulfide (MoS2), which is composed of active edge sites and a catalytically inert basal plane, is a promising catalyst to replace the state‐of‐the‐art Pt for electrochemically catalyzing hydrogen evolution reaction (HER). Because the basal plane consists of the majority of the MoS2 bulk materials, activation of basal plane sites is an important challenge to further enhance HER performance. Here, an in situ electrochemical activation process of the MoS2 basal planes by using the atomic layer deposition (ALD) technique to improve the HER performance of commercial bulk MoS2 is first demonstrated. The ALD technique is used to form islands of titanium dioxide (TiO2) on the surface of the MoS2 basal plane. The coated TiO2 on the MoS2 surface (ALD(TiO2)‐MoS2) is then leached out using an in situ electrochemical activation method, producing highly localized surface distortions on the MoS2 basal plane. The MoS2 catalysts with activated basal plane surfaces (ALD(Act.)‐MoS2) have dramatically enhanced HER kinetics, resulting from more favorable hydrogen‐binding.  相似文献   

19.
Replacement of precious metals with earth‐abundant electrocatalysts for oxygen evolution reaction (OER) holds great promise for realizing practically viable water‐splitting systems. It still remains a great challenge to develop low‐cost, highly efficient, and durable OER catalysts. Here, the composition and morphology of Ni–Co bimetal phosphide nanocages are engineered for a highly efficient and durable OER electrocatalyst. The nanocage structure enlarges the effective specific area and facilitates the contact between catalyst and electrolyte. The as‐prepared Ni–Co bimetal phosphide nanocages show superior OER performance compared with Ni2P and CoP nanocages. By controlling the molar ratio of Ni/Co atoms in Ni–Co bimetal hydroxides, the Ni0.6Co1.4P nanocages derived from Ni0.6Co1.4(OH)2 nanocages exhibit remarkable OER catalytic activity (η = 300 mV at 10 mA cm?2) and long‐term stability (10 h for continuous test). The density‐functional‐theory calculations suggest that the appropriate Co doping concentration increases density of states at the Fermi level and makes the d‐states more close to Fermi level, giving rise to high charge carrier density and low intermedia adsorption energy than those of Ni2P and CoP. This work also provides a general approach to optimize the catalysis performance of bimetal compounds.  相似文献   

20.
A simple, versatile and cheap synthetic route is demonstrated for the preparation of Co3O4 decorated blood powder derived heteroatom doped porous carbon (BDHC). The inorganic hybrid performs well as an advanced bifunctional non‐precious metal electrocatalyst. The hybridization of Co3O4 with the blood‐derived carbon results in improved activities not only towards the oxygen reduction reaction (ORR), but also in the reverse oxygen evolution reaction (OER). An improved ORR activity and a tuned four electron transfer selectivity can be assigned to a synergistic catalytic effect due the intimate contact between Co34 particles and the highly conductive heteroatom doped carbon support, mediated by cobalt‐nitrogen or cobalt‐phosphorous coordination sites. This heterojunction may facilitate the electron transfer by preventing an accumulation of electron density within the Co34 particles. The straight‐forward and cheap synthesis of the highly active and durable electrocatalyst make it a promising candidate for a next‐generation bifunctional electrocatalyst for applications such as reversible fuel cells/electrolyzers or metal air batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号