首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Versatile bioinspired strategies are urgently needed to fabricate high‐performance nanoprobes for biomedical application. Herein, a novel bioinspired technology of mimicking drug–substrate interaction is reported for the fabrication of high‐performance nanoprobes. As a proof of concept, a multifunctional bovine serum albumin (BSA)‐MnO2 nanoparticle‐based nanoplatform is strategically engineered via mimicking the disinfection process of KMnO4 in an extremely facile way. The prepared BSA‐MnO2 nanoparticles possess sub‐10 nm and uniform size, excellent colloidal stability, and impressive T 1 relaxivity of 7.9 mm ?1 s?1. The proposed nanoprobe could not only be employed as a high‐performance magnetic resonance imaging (MRI) agent for tumor and renal imaging but can also provide a platform for integrating therapeutic strategies toward tumors. The universal strategy could also be easily extended to the fabrication of other nanoprobes for MR imaging in vivo using other bioactive proteins including ovalbumin and transferrin. This work will open a new way for the development of biomaterials in biomedicine applications.  相似文献   

2.
Hydrophobically stabilized near‐IR fluorescence from self‐assembled nanoprobes composed of amphiphilic poly(maleic anhydride‐alt‐octadec‐1‐ene) (PMAO) and lipophilized squaraine dopants is reported. From comparative studies with varying lipophilicity of squaraine dyes as well as of nanoparticulate polymer matrices, it is found that dual protection by simultaneous lipophilization of the dye‐polymer pair greatly improves the chemical stability of labile squaraine dyes, to produce efficient NIR fluorescence in physiological aqueous milieux. The surface properties of negatively charged PMAO nanoparticles are readily modified by coating with an amine‐rich cationic glycol chitosan with biofunctionality. Efficient cellular imaging and in vivo sentinel lymph node mapping with size and surface‐controlled nanoprobes demonstrate that lipophilic dual protection of NIR fluorescence and the underlying functional nanoprobe approach hold great potential for bioimaging applications.  相似文献   

3.
To achieve the accurate diagnosis of tumor with the magnetic resonance imaging (MRI), nanomaterials‐based contrast agents are developed rapidly. Here, a tumor targeting nanoprobe of c(RGDyK) modified ultrasmall sized iron oxide is reported with high saturation magnetization and high T1‐weighted imaging capability, attributed to a large number of paramagnetic centers on the surface of nanoprobes and rapid water proton exchange rate (inner sphere model), as well as strong superparamagnetism (outer sphere model). These nanoprobes could actively target and gradually accumulate at the tumor site with a time‐dependent T1–T2 contrast enhancement imaging effect. In in vivo MRI experiments, the nanoprobes exhibit the best T1 contrast enhancement at 30 min after intravenous administration, followed by gradually vanishing and generating T2 contrast enhancement with increasing time at tumor site. This is likely due to time‐dependent nanoprobes aggregation in tumor, in good agreement with in vitro experiment where aggregated nanoprobes display larger r2/r1 value (19.1) than that of the dispersed nanoprobes (2.8). This dynamic property is completely different from other T1‐T2 dual‐modal nanoprobes which commonly exhibit the T1‐ and T2‐weighted enhancement effect at the same time. To sum up, these c(RGDyK) modified ultrasmall Fe3O4 nanoprobes have significant potential to improve the diagnostic accuracy and sensitivity in MRI.  相似文献   

4.
Gold nanoprobes immobilized with fluorescein‐hyaluronic acid (HA) conjugates are fabricated and utilized for monitoring intracellular reactive oxygen species (ROS) generation in live cells via nanoparticle surface energy transfer. A bio‐inspired adhesive molecule, dopamine, is used to robustly end‐immobilize HA onto the surface of gold nanoparticles (AuNPs) for securing intracellular stability against glutathione. ROS induces cleavage and fragmentation of the HA chains immobilized on the surface of the AuNPs allows rapid and specific detection of intracellular ROS by emitting strong fluorescence‐recovery signals. In particular, fluorescence‐quenched gold nanoprobes exhibit selective and dose‐dependent fluorescence‐recovery signals upon exposure to certain oxygen species such as superoxide anion () and hydroxyl radical (·OH). The fluorescent gold nanoprobe is usefully exploited for real‐time intracellular ROS detection and antioxidant screening assay, and has exciting potential for various biomedical applications as a new class of ROS imaging probes.  相似文献   

5.
Controlling synthesis of near‐infrared emitting quantum rods (QRs) for in vivo imaging is a major challenge in the fabrication of multifunctional nanoprobes. Here, a reliable synthetic approach for CdTe x Se1–x /ZnS alloy nanocrystals to achieve highly bright (quantum yields up to 80%) with controllable rod‐shape and near‐infrared (650–870 nm) emission is developed. Aspect ratio and emission of QRs are correlated with composition, which can be easily tuned by changing Te and Se mole ratio. It illustrates that the content of Se plays an important role in maintaining the rod‐shape, while Te has a significant impact on emitting of the nanorods. Besides exhibiting great stability over a broad range of pH (4–10) and ion strength (up to 2 mol L‐1 NaCl solution), these hydrophilic QRs display good photo stability and storage stability. In particular, the specially absorbing of paramagnetic gadolinium ions on the QRs lead to a versatile method to engineer multimodal imaging nanoprobes, which are applied for in vivo lymph node dual‐modal imaging (fluorescence and magnetic resonance imaging). These results suggest a promising strategy for engineering multifunctional imaging nanoprobes with the stable near‐infrared QRs.  相似文献   

6.
Here, novel nanoprobes for combined optical and magnetic resonance (MR) bioimaging are reported. Fluoride (NaYF4) nanocrystals (20–30 nm size) co‐doped with the rare earth ions Gd3+ and Er3+/Yb3+/Eu3+ are synthesized and dispersed in water. An efficient up‐ and downconverted photoluminescence from the rare‐earth ions (Er3+ and Yb3+ or Eu3+) doped into fluoride nanomatrix allows optical imaging modality for the nanoprobes. Upconversion nanophosphors (UCNPs) show nearly quadratic dependence of the photoluminescence intensity on the excitation light power, confirming a two‐photon induced process and allowing two‐photon imaging with UCNPs with low power continuous wave laser diodes due to the sequential nature of the two‐photon process. Furthermore, both UCNPs and downconversion nanophosphors (DCNPs) are modified with biorecognition biomolecules such as anti‐claudin‐4 and anti‐mesothelin, and show in vitro targeted delivery to cancer cells using confocal microscopy. The possibility of using nanoprobes for optical imaging in vivo is also demonstrated. It is also shown that Gd3+ co‐doped within the nanophosphors imparts strong T1 (Spin‐lattice relaxation time) and T2 (spin‐spin relaxation time) for high contrast MR imaging. Thus, nanoprobes based on fluoride nanophosphors doped with rare earth ions are shown to provide the dual modality of optical and magnetic resonance imaging.  相似文献   

7.
Surface engineering of nanomaterials allows fine tuning of their interactions with biological systems, and thus can benefit their applications in monitoring intracellular events. Herein, the facile synthesis of ligand‐functionalized gold nanoclusters (AuNCs) as intracellular probes targeting highly reactive oxygen species (hROS, such as ?OH, ClO?, and ONOO?) is demonstrated. Selected ligands such as quaternary ammonium and oligopeptides are utilized to modulate the surface chemistry of AuNCs. It is shown that AuNCs decorated with the cell‐penetrating oligoarginine peptide facilitate cellular uptake and intracellular imaging of hROS in living cells and the zebrafish, with high stability and selectivity.  相似文献   

8.
Multimodal imaging, which combines complementary information of two or more imaging modalities, offers huge advantages. In this paper, the synthesis, characterization, and application of superparamagnetic nitrogen‐doped carbon‐iron oxide hybrid quantum dots (C‐Fe3O4 QDs) is reported for triple‐modal bioimaging through fluorescence/magnetic resonance/computed tomography (FL/MR/CT). Especially, C‐Fe3O4 QDs are synthesized by using poly (γ‐glutamic acid) as a precursor and stabilizer via a green and facile one‐pot hydrothermal approach. The as‐prepared C‐Fe3O4 QDs exhibit excellent water dispersibility, wavelength‐tunable FL property with high quantum yield of about 21.6%, good photostability, strong superparamagnetic property as well as favorable biocompatibility. Meanwhile, these C‐Fe3O4 QDs also show a transverse relaxivity value (r 2) of 154.10 mm ?1 s?1 for T2‐weighted MR imaging mode and an observable X‐ray attenuation effect for CT imaging mode. Moreover, the in vivo bioimaging of tumor‐bearing nude mice by combining FL, MR, and CT images further demonstrates that the as‐prepared C‐Fe3O4 QDs can be readily and efficiently used in FL/MR/CT triple‐modal tumor imaging. Hence, the new and facile one‐pot synthesis strategy for preparing multifunctional C‐Fe3O4 QDs nanoprobes provides a convenient way for achieving an effective and versatile agent for tumorous bioimaging/or diagnostics.  相似文献   

9.
Ionic transition‐metal complexes based on silver(I) metal core (Ag‐iTMCs) represent an appealing alternative to other iTMCs in solid‐state lighting owing to (i) their low cost and well‐known synthesis, (ii) the tunable bandgap, and (iii) the highly efficient photoluminescence. However, their electroluminescence behavior is barely studied. Herein, the archetypal green‐emitting Ag‐iTMCs, namely [Ag(4,4′‐dimethoxy‐2,2′‐bipyridine)(Xantphos)]X (X = BF4, PF6, and ClO4), are thoughtfully investigated, revealing their electroluminescent features in light‐emitting electrochemical cells (LECs). Despite optimizing device fabrication and operation, luminance of 40 cd m?2, efficacy of 0.2 cd A?1, and a very poor stability of 30 s are achieved. This outcome encourages the comprehensive study of the degradation mechanism combining electrochemical impedance spectroscopy, X‐ray diffraction, and cyclic voltammetry techniques. These results point out the irreversible formation of silver nanoclusters under operation strongly limiting the device performance. As such, LECs are further optimized by (i) changing the counterions (PF6? and ClO4?) and (ii) decoupling electron injection and exciton formation using a double‐layered architecture. The synergy of both approaches leads to a broad exciplex‐like whitish electroluminescence emission (x/y CIE of 0.40/0.44 and color rendering index of 85) with an outstanding improved stability of ≈4 orders of magnitude (>80 h) without losing brightness (35 cd m?2).  相似文献   

10.
Integrating multiple functionalities into individual nanoscale complexes is of tremendous importance in biomedicine, expanding the capabilities of nanoscale structures to perform multiple parallel tasks. Here, the ability to enhance two different imaging technologies simultaneously—fluorescence optical imaging and magnetic resonance imaging—with antibody targeting and photothermal therapeutic actuation is combined all within the same nanoshell‐based complex. The nanocomplexes are constructed by coating a gold nanoshell with a silica epilayer doped with Fe3O4 and the fluorophore ICG, which results in a high T2 relaxivity (390 mM ?1 s?1) and 45× fluorescence enhancement of ICG. Bioconjugate nanocomplexes target HER2+ cells and induce photothermal cell death upon near‐IR illumination.  相似文献   

11.
A specially designed n‐type semiconductor consisting of Ca‐doped ZnO (CZO) nanoparticles is used as the electron transport layer (ETL) in high‐performance multicolor perovskite light‐emitting diodes (PeLEDs) fabricated using an all‐solution process. The band structure of the ZnO is tailored via Ca doping to create a cascade of conduction energy levels from the cathode to the perovskite. This energy band alignment significantly enhances conductivity and carrier mobility in the CZO ETL and enables controlled electron injection, giving rise to sub‐bandgap turn‐on voltages of 1.65 V for red emission, 1.8 V for yellow, and 2.2 V for green. The devices exhibit significantly improved luminance yields and external quantum efficiencies of, respectively, 19 cd A?1 and 5.8% for red emission, 16 cd A?1 and 4.2% for yellow, and 21 cd A?1 and 6.2% for green. The power efficiencies of these multicolor devices demonstrated in this study, 30 lm W?1 for green light‐emitting PeLED, 28 lm W?1 for yellow, and 36 lm W?1 for red are the highest to date reported. In addition, the perovskite layers are fabricated using a two‐step hot‐casting technique that affords highly continuous (>95% coverage) and pinhole‐free thin films. By virtue of the efficiency of the ETL and the uniformity of the perovskite film, high brightnesses of 10 100, 4200, and 16,060 cd m?2 are demonstrated for red, yellow, and green PeLEDs, respectively. The strategy of using a tunable ETL in combination with a solution process pushes perovskite‐based materials a step closer to practical application in multicolor light‐emitting devices.  相似文献   

12.
Detection of glutathione (GSH) in the body is essential to accurately map the redox state of cells and real-time visualization of physiological and pathological conditions in vivo. However, traditional fluorescence (FL) imaging in the near-infrared I region (NIR-I, 650–900 nm) is difficult to quantitively visualize GSH in vivo due to the tissue autofluorescence background and disastrous photon scattering. Herein, a NIR-IIb (1500–1700 nm) nanoprobe consisting of 4-nitrophenol-Cy7 (NPh) conjugated lanthanide-based downconversion nanoparticles (DCNP@NPh-PEG) is developed for in vivo ratiometric imaging of GSH. In the presence of GSH, NPh shows responsively enhanced FL emission at 808 nm, thus enhancing FL signal at 1550 nm of DCNPs excited by 808 nm (F1550, 808Ex) through non-radiative energy transfer (NRET) effect, while the fluorescence of DCNP at 1550 nm excited by 980 nm laser (F1550, 980Ex) is stable because no NRET occurred. The ratiometric F1550, 980Ex/F1550, 808Ex value exhibits a linearship with GSH concentration ranged from 0–24 mm with detection limit of 0.3 mm . The NIR-IIb nanoprobe has excellent performance in detecting and imaging GSH in both subcutaneous tumor and orthotopic colon tumor in vivo with high accuracy and resolution. The design strategy of the ratiometric NIR-II FL nanoprobe based on the activated FERT effect provides a reliable tool for the development of NIR-II nanoprobes for accurate biosensing in vivo.  相似文献   

13.
A strategy is demonstrated for simultaneous phase/size manipulation, multicolor tuning, and remarkably enhanced upconversion luminescence (UCL), particularly in red emission bands in fixed formulae of general lanthanide‐doped upconverting nanoparticles (UCNPs), namely NaLnF4:Yb/Er (Ln: Lu, Gd, Yb), simply through transition metal Mn2+‐doping. The addition of different Mn2+ dopant contents in NaLnF4:Yb/Er system favors the crystal structure changing from hexagonal (β) phase to cubic (α) phase, and the crystal size of UCNPs can be effectively controlled. Moreover, the UCL can be tuned from green through yellow and to dominant red emissions under the excitation of 980 nm laser. Interestingly, a large enhancement in overall UCL spectra of Mn2+ doped UCNPs (~59.1 times for NaLuF4 host, ~39.3 times for NaYbF4 host compared to the UCNPs without Mn2+ doping) is observed, mainly due to remarkably enhanced luminescence in the red band. The obtained result greatly benefits in vitro and in vivo upconversion bioimaging with highly sensitive and deeper tissue penetration. To prove the application, a select sample of nanocrystal is used as an optical probe for in vitro cell and in vivo bioimaging to verify the merits of high contrast, deeper tissue penetration, and the absence of autofluorescence. Furthermore, the blood vessel of lung of a nude mouse with the injection of Mn2+‐doped NaLuF4: Yb/Er UCNPs can be readily visualized using X‐ray imaging. Therefore, the Mn2+ doping method provides a new strategy for phase/size control, multicolor tuning, and remarkable enhancement of UCL dominated by red emission, which will impact on the field of bioimaging based on UCNP nanoprobes.  相似文献   

14.
The unique and unprecedented electroluminescence behavior of the white‐emitting molecule 3‐(1‐(4‐(4‐(2‐(2‐hydroxyphenyl)‐4,5‐diphenyl‐1H‐imidazol‐1‐yl)phenoxy)phenyl)‐4,5‐diphenyl‐1H‐imidazol‐2‐yl)naphthalen‐2‐ol (W1), fluorescence emission from which is controlled by the excited‐state intramolecular proton transfer (ESIPT) is investigated. W1 is composed of covalently linked blue‐ and yellow‐color emitting ESIPT moieties between which energy transfer is entirely frustrated. It is demonstrated that different emission colors (blue, yellow, and white) can be generated from the identical emitter W1 in organic light‐emitting diode (OLED) devices. Charge trapping mechanism is proposed to explain such a unique color‐tuned emission from W1. Finally, the device structure to create a color‐stable, color reproducible, and simple‐structured white organic light‐emitting diode (WOLED) using W1 is investigated. The maximum luminance efficiency, power efficiency, and luminance of the WOLED were 3.10 cd A?1, 2.20 lm W?1, 1 092 cd m?2, respectively. The WOLED shows white‐light emission with the Commission Internationale de l′Eclairage (CIE) chromaticity coordinates (0.343, 0.291) at a current level of 10 mA cm?2. The emission color is high stability, with a change of the CIE chromaticity coordinates as small as (0.028, 0.028) when the current level is varied from 10 to 100 mA cm?2.  相似文献   

15.
For the first time, a novel type of chameleon DNA‐templated silver nanocluster (AgNC) is found whose fluorescence color can be switched among yellow, orange, and red by the regulation of complementary DNA, nonfluorescent assistant AgNC as well as Mg2+. AgNC templated by A20‐C55 (A20‐C55‐NC) possesses strong yellow fluorescence (Y signal) in phosphate buffer solution. When approaching to the nonfluorescent assistant AgNC through template hybridization, Y signal decreases while a new red emission (R signal) rises, leading to a dramatic color change of AgNC solution from yellow to red. On the other hand, hybridization of A20‐C55‐NC with complementary DNA (T20) largely enhances the Y signal while A20‐C55‐NC shows R and Y signal with equal intensity simultaneously in the presence of Mg2+. Therefore, the chameleon AgNC achieves controllable multicolor fluorescence variation. Based on above mechanism, a series of ratiometric analysis platforms are constructed for DNA target detection. Surprisingly, the ratiometric probes demonstrate an exponential growth of signal response with nanomolar sensitivity whether in double‐stranded or hairpin‐shaped structure. Accordingly, this universal ratiometric analysis platform possesses low background, large signal variation in a narrow concentration range, which presents obvious advantages over most of previous DNA detection strategies that are based on DNA‐templated AgNC.  相似文献   

16.
The unique and unprecedented electroluminescence behavior of the white‐emitting molecule 3‐(1‐(4‐(4‐(2‐(2‐hydroxyphenyl)‐4,5‐diphenyl‐1H‐imidazol‐1‐yl)phenoxy)phenyl)‐4,5‐diphenyl‐1H‐imidazol‐2‐yl)naphthalen‐2‐ol (W1), fluorescence emission from which is controlled by the excited‐state intramolecular proton transfer (ESIPT) is investigated. W1 is composed of covalently linked blue‐ and yellow‐color emitting ESIPT moieties between which energy transfer is entirely frustrated. It is demonstrated that different emission colors (blue, yellow, and white) can be generated from the identical emitter W1 in organic light‐emitting diode (OLED) devices. Charge trapping mechanism is proposed to explain such a unique color‐tuned emission from W1. Finally, the device structure to create a color‐stable, color reproducible, and simple‐structured white organic light‐emitting diode (WOLED) using W1 is investigated. The maximum luminance efficiency, power efficiency, and luminance of the WOLED were 3.10 cd A?1, 2.20 lm W?1, 1 092 cd m?2, respectively. The WOLED shows white‐light emission with the Commission Internationale de l′Eclairage (CIE) chromaticity coordinates (0.343, 0.291) at a current level of 10 mA cm?2. The emission color is high stability, with a change of the CIE chromaticity coordinates as small as (0.028, 0.028) when the current level is varied from 10 to 100 mA cm?2.  相似文献   

17.
Multicolor luminescent films have great potential for use in optoelectronics, solid‐state light‐emitting materials, and optical devices. This work describes a systematic investigation of the ordered assembly of two‐ (blue/green, blue/orange, red/blue, red/green) and three‐color (blue/red/green) light‐emitting ultrathin films (UTFs) by using different photofunctional anions [bis(N‐methylacridinium)@polyvinylsulfonate ion pairs and anionic derivatives of poly(p‐phenylene), poly(phenylenevinylene), and poly(thiophene)] and Mg‐Al‐layered double hydroxide nanosheets as building blocks. The rational combination of luminescent components affords precise control of the emission wavelengths and intensity, and multicolored luminescent UTFs can be precisely tailored covering most of the visible spectral region. The assembly process of the UTFs and their luminescence properties, as monitored by UV–vis absorption and fluorescence spectroscopy, resulted in a gradual change in luminescence color in the selected light‐emitting spectral region upon increasing the number of deposition cycles. X‐ray diffraction demonstrates that the UTFs are periodic layered structures involving heterogeneous superlattices associated with individual photoactive anion–LDH units. These UTFs also exhibit well‐defined multicolor polarized fluorescence with high polarization anisotropy, and the emissive color changes with polarization direction. Therefore, this work provides a way of fabricating heterogeneous UTFs with tunable‐color luminescence as well as polarized multicolor emission, which have potential applications in the areas of light displays and optoelectronic devices.  相似文献   

18.
Effective nanoprobes and contrast agents are urgently sought for early‐stage cancer diagnosis. Upconversion nanoparticles (UCNPs) are considerable alternatives for bioimaging, cancer diagnosis, and therapy. Yb3+/Tm3+ co‐doping brings both emission and excitation wavelengths into the near‐infrared (NIR) region, which is known as “optical transmission window” and ideally suitable for bioimaging. Here, NIR emission intensity is remarkably enhanced by 113 times with the increase of Yb3+ concentration from 20% to 98% in polyethylene glycol (PEG) modified NaYF4:Yb3+/Tm3+ UCNPs. PEG‐UCNPs‐5 (98% Yb3+) can act as excellent nanoprobes and contrast agents for trimodal upconversion (UC) optical/CT/T2‐weighted magnetic resonance imaging (MRI). In addition, the enhanced detection of lung in vivo long‐lasting tracking, as well as possible clearance mechanism and excretion routes of PEG‐UCNPs‐5 have been demonstrated. More significantly, a small tumor down to 4 mm is detected in vivo via intravenous injection of these nanoprobes under both UC optical and T2‐weighted MRI modalities. PEG‐UCNPs‐5 can emerge as bioprobes for multi‐modal bioimaging, disease diagnosis, and therapy, especially the early‐stage tumor diagnosis.  相似文献   

19.
White organic light‐emitting diodes (WOLEDs) composed of conventional fluorophores possess color purity, low efficiency roll‐off, and rare metal absence, but suffer from theoretical limits due to the lack of triplet utilization. Due to the different diffusion distance for singlets and triplets, multiple Förster resonance energy transfer (FRET) channels can be adequately built up. Herein, besides the complementary component, a blue fluorescence layer, hosted by pure hydrocarbon material SF4‐TPE, is put forward as the spatial exciton manipulating layer to rationally allocate singlets and triplets to the corresponding channels. Hence, singlets are captured by the blue fluorophore, diffused triplets subsequently undergo energy resonance between the blue fluorophore and green assistant, and up‐conversion effect for eventual emission from the yellow fluorophore. Owing to the utilization of singlets and triplets, all‐fluorescence WOLEDs exhibit high efficiency exceeding 20%, with slight efficiency roll‐off even under high luminance of 5000 cd cm?2. Moreover, CIE coordinates can be surrounding and precisely inside the American National Standard Institute (ANSI) quadrangles, as well as outstanding color stability (ΔCIE‐(x, y) within (0.001, 0.012)) from 300 to 13000 cd cm?2.  相似文献   

20.
A new dicyanodistyrylbenzene‐based phasmidic molecule, (2Z,2′Z)‐2,2′‐(1,4‐phenylene)bis(3‐(3,4,5‐tris(dodecyloxy)phenyl)acrylonitrile), GDCS, is reported, which forms a hexagonal columnar liquid crystal (LC) phase at room temperature (RT). GDCS molecules self‐assemble into supramolecular disks consisting of a pair of molecules in a side‐by‐side disposition assisted by secondary bonding interactions of the lateral polar cyano group, which, in turn, constitute the hexagonal columnar LC structure. GDCS shows very intense green/yellow fluorescence in liquid/solid crystalline states, respectively, in contrast to the total absence of fluorescence emission in the isotropic melt state according to the characteristic aggregation‐induced enhanced emission (AIEE) behavior. The AIEE and two‐color luminescence thermochromism of GDCS are attributed to the peculiar intra‐ and intermolecular interactions of dipolar cyanostilbene units. It was found that the intramolecular planarization and restricted molecular motion associated with a specific stacking situation in the liquid/solid crystalline phases are responsible for the AIEE phenomenon. The origin of the two‐color luminescence was elucidated to be due to the interdisk stacking alteration in a given column driven by the specific local dipole coupling between molecular disks. These stacking changes, in turn, resulted in the different degree of excited‐state dimeric coupling to give different emission colors. To understand the complicated photophysical properties of GDCS, temperature‐dependent steady‐state and time‐resolved PL measurements have been comprehensively carried out. Uniaxially aligned and highly fluorescent LC and crystalline microwires of GDCS are fabricated by using the micromolding in capillaries (MIMIC) method. Significantly enhanced electrical conductivity (0.8 × 10?5 S?cm?1/3.9 × 10?5 S?cm?1) of the aligned LC/crystal microwires were obtained over that of multi‐domain LC sample, because of the almost perfect shear alignment of the LC material achieved in the MIMIC mold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号