首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
This paper proposes a new layered transport network architecture on which the WDM optical path network can be effectively created. The optical path network will play a key role in the development of the transport network that will realize the bandwidth-abundant B-ISDN. This paper extends the layered transport network architecture described in ITU-T Recommendation G.803 which is applied in existing SDH networks. First, we elucidate an application example of WDM optical path networks. Next, we propose a new layered architecture for WDM-based transport networks that retains maximum commonality with the layered architectures developed for existing B-ISDN networks. The proposed architecture is composed of circuit layer networks, electrical path layer networks, optical layer networks, and physical media (fiber) networks. The optical layer is divided into an optical path layer and an optical section layer. The optical path layer accommodates electrical paths. Optical section layer networks are divided into optical multiplex section (OMS) layer networks and optical repeater section (ORS) layer networks. The OMS layer network is concerned with the end-to-end transfer of information between locations transferring or terminating optical paths, whereas the ORS layer is concerned with the transfer of information between individual optical repeaters. Finally, a detailed functional block model of WDM optical path networks, the function allocation of each layer, and an optical transport module (OTM) are developed  相似文献   

2.
Photonic networks based on wavelength division multiplexing (WDM) and optical path technologies are expected to realize flexible, transparent, and cost-effective transport networks with a large transmission capacity. This paper explores the design framework of photonic transport networks taking into consideration the operation administration and maintenance (OA&M) functions required for the successful introduction of WDM systems based on the optical path concept. From the view point of network maintenance, clear distinction is made between the optical path layer and the optical section layer to facilitate accurate and smooth failure localization. The digital multiplexing span between physical multiplexing interfaces at the end-to-end digital nodes should have the same maintenance span as the corresponding optical path. We argue that cooperative maintenance by OA&M functions at both the digital and optical layers can be a practical way of network supervision. A supervisory (SV) signal transfer method and a configuration that is suitable for the terrestrial trunk network are also indicated. As an example, a practical SV system design methodology and an actual procedure developed for a single channel optical transmission system based on optical in-line amplifiers are introduced. Furthermore, application of the developed SV system and network restoration schemes is discussed for future WDM-based photonic networks. The OA&M aspects introduced will be valuable for creating future photonic network systems  相似文献   

3.
Photonic transport network OAM technologies   总被引:3,自引:0,他引:3  
The optical path concept was proposed to realize ubiquitous B-ISDN. It can make quantum leaps in both transmission capacity and cross-connect throughput simultaneously by exploiting WDM (wavelength division multiplexing) transmission and the wavelength routing capabilities of paths. Since the optical path is a new concept, new operation and management (OAM) systems and related technologies need to be developed before it can be fully utilized. This article discusses some of the key OAM-related issues and identifies the technical points necessary for future developments. The issues include optical path realization technologies, optical path accommodation design problems, a newly proposed optical transport network layer architecture, and the optical transport module for the network node interface  相似文献   

4.
An optical packet switch based on WDM technologies   总被引:6,自引:0,他引:6  
Dense wavelength-division multiplexing (DWDM) technology offers tremendous transmission capacity in optical fiber communications. However, switching and routing capacity lags behind the transmission capacity, since most of today's packet switches and routers are implemented using slower electronic components. Optical packet switches are one of the potential candidates to improve switching capacity to be comparable with optical transmission capacity. In this paper, we present an optically transparent asynchronous transfer mode (OPATM) switch that consists of a photonic front-end processor and a WDM switching fabric. A WDM loop memory is deployed as a multiported shared memory in the switching fabric. The photonic front-end processor performs the cell delineation, VPI/VCI overwriting, and cell synchronization functions in the optical domain under the control of electronic signals. The WDM switching fabric stores and forwards cells from each input port to one or more specific output ports determined by the electronic route controller. We have demonstrated with experiments the functions and capabilities of the front-end processor and the switching fabric at the header-processing rate of 2.5 Gb/s. Other than ATM, the switching architecture can be easily modified to apply to other types of fixed-length payload formats with different bit rates. Using this kind of photonic switch to route information, an optical network has the advantages of bit rate, wavelength, and signal-format transparencies. Within the transparency distance, the network is capable of handling a widely heterogeneous mix of traffic, including even analog signals.  相似文献   

5.
In this article traffic-engineering issues regarding network survivability, traffic grooming, impairment-aware routing, virtual-topology engineering, and coordination among multiple layers of network architecture will be reviewed for next-generation optical networks based on Wavelength-Division Multiplexing (WDM). Due to the recent progress and development of WDM technology, increasing traffic demands can be readily accommodated in the next-generation optical networks. In spite of the huge amount of capacity (e.g., OC-192) provided by a WDM channel, enhanced network services and network performance improvement can only be achieved with efficient traffic-engineering mechanisms. The fault-tolerant function is essential in order to provide seamless services to users by protecting their traffic against failures in the optical network because many connections can be carried on a fiber. Because the capacity of a WDM channel is very large, its bandwidth may not be efficiently utilized by a single connection. Hence, low-rate user connections need to be efficiently aggregated through the traffic-grooming scheme. An intelligent routing algorithm is especially necessary in the optical network where signal impairments due to device imperfections might degrade the signal quality. In addition, the virtual network connectivity (topology) should be flexibly maintained such that dynamic changes to the traffic demands can be easily absorbed, which can be implemented by the virtualtopology engineering method in a WDM network. As the dominant usage of Internet Protocol (IP) of the Internet is expected to reside directly above the WDM layer in the future network, the coordinated trafficengineering scheme should be deliberately designed for the multi-layer network by judiciously choosing where to put many overlapping functions in the different network layers.  相似文献   

6.
下一代光通信技术的发展   总被引:1,自引:0,他引:1  
韦乐平 《世界电信》2002,15(7):28-32
由于WDM系统的出现和发展,SDH技术开始向网络边缘转移,作为融合的多业务节点;40G传输系统的实用化受限于材料、传输媒质的色散和系统的性价比;波分复用系统向超大容量和超长距离发展;城域网WDM技术需要继续改进性价比;自动光交换网络(ASON)使光联网走出静态的局限;未来的网络将实现IP层与光传送层的融合,网络演进路径有两种方式:重迭模型和集成模型;以太网与无源光网络的结合———以太网无源光网络(EPON)的发展潜力巨大,其标准正在加紧制定中。  相似文献   

7.
A new wavelength-division-multiplexing (WDM) optical switch using an acoustooptic deflector (AOD) is presented. This switch requires minimal hardware and is highly applicable in high-speed signal switching. Theoretical calculations based on the Gaussian beam approximation show that up to a 20 × 20 switch is possible using present technology. As a preliminary study, a 3 × 3 WDM switch is constructed. Crosstalk of this switch is found to be less than -20 dB, and a 500 Mbit/s return to zero (RZ) signal is successfully switched with a 4-μs switch access time. A large capacity switching network using this WDM optical switch is proposed.  相似文献   

8.
This paper proposes and evaluates a four-wave mixing (FWM) aware evolutionary programming algorithm for dynamically setting up lightpaths in an optical wavelength division multiplexed network (WDM network). The proposed algorithm also considers the effect of amplified spontaneous emission noise (ASE noise) on a lightpath during propagation of the optical signal from any source to the intended destination. As crosstalk due to FWM and ASE noise are two transmission impairments that degrade the quality of optical signal even at low to medium data rates, it is mandatory for an algorithm for dynamic routing and wavelength assignment in a WDM network to consider the effect of these two impairments on the lightpath to be established. The distinguishing feature of the proposed algorithm is that it is based on an initial population of a single individual and uses a fitness function that is expressed in terms of the number of hops, path cost, variance contributions due to FWM crosstalk, amplifier noise, and different beat noises at the receiver. The performance of a newly introduced FWM aware priority-based wavelength assignment technique is compared with few of the existing wavelength assignment techniques in the present work.  相似文献   

9.
Evolution of optical transport technologies: from SONET/SDH to WDM   总被引:5,自引:0,他引:5  
It took roughly 10 years for the transport network industry to migrate from PDH to SONET. As this technology swap comes to an end, WDM technology is dawning, promising to revolutionize the network industry, with the possibility of transport bit rates above 10 Gb/s as well as transparency to signal encodings. However, a new wave of equipment upgrade is unlikely to happen as current SONET equipment is just beginning to pay off for its large investment. Thus, in years to come, SONET technology, the current standard for optical fiber access, will have to make room for WDM technology in a gradual way. On its part, WDM equipment must be developed to be backward compatible with SONET technology. This article discusses the requirements and issues involved in making WDM technology interoperable with SONET legacy equipment, as well as the evolution path toward a transparent optical transport network  相似文献   

10.
赵丽娟  姜焕秋  徐志钮 《半导体光电》2021,42(6):776-783, 798
基于光纤中光子轨道角动量(Orbital Angular Momentum,OAM)的模式复用技术在提高光通信容量方面具有很大的潜力.适合于传输OAM模式的光纤通过材料和结构的优化设计逐步实现了 OAM信号传输更稳定、传输距离更长,OAM模式更多等特性.文章从光纤的模式叠加理论出发,分析比较了各种传输OAM模式光纤的研究成果、优缺点以及适合的应用场景,包括基于传统光纤设计的环状光纤、超模光纤,以及基于光子晶体光纤设计的六角和圆形光子晶体光纤等.最后对适合于传输OAM模式光纤的发展前景做了展望.  相似文献   

11.
The explosive growth of Internet traffic has led to a dramatic increase in demand for data transmission capacity, which requires high transmission rates beyond the conventional transmission capability. This demand has spurred tremendous research activities in new high-speed transmission and switching technologies. As optical transmission technology keeps maturing, next generation optical networks are expected to be controlled by Generalized Multiprotocol Label Switching (GMPLS) protocol suite and operating at multiple switching layers. In order to ensure the most efficient utilization of multilayer network resources, and to maximize revenue from existing capacity, effective global provisioning solution that providing the network with the possibility of reacting in advance to traffic changes should be provided. This paper proposes a new path provisioning scheme in multilayer optical networks based on the vertical Path Computation Element (PCE) architecture to efficiently exploit multiple PCE cooperation. This paper also investigated the problem of how network nodes overcome limited visibility of network resources. Unlike most of the previous studies, the topology of the upper switching layer is not always equal to the physical topology of lower switching layer.  相似文献   

12.
A fully functional optical packet switching (OPS) interconnection network based on the data vortex architecture is presented. The photonic switching fabric uniquely capitalizes on the enormous bandwidth advantage of wavelength division multiplexing (WDM) wavelength parallelism while delivering minimal packet transit latency. Utilizing semiconductor optical amplifier (SOA)-based switching nodes and conventional fiber-optic technology, the 12-port system exhibits a capacity of nearly 1 Tb/s. Optical packets containing an eight-wavelength WDM payload with 10 Gb/s per wavelength are routed successfully to all 12 ports while maintaining a bit error rate (BER) of 10/sup -12/ or better. Median port-to-port latencies of 110 ns are achieved with a distributed deflection routing network that resolves packet contention on-the-fly without the use of optical buffers and maintains the entire payload path in the optical domain.  相似文献   

13.
一种新的光因特网网络技术研究   总被引:5,自引:0,他引:5  
近年来,光技术已能把巨大信息流传送很长一段距离,这一成功使高容量波分多路复用(WDM)系统迅速商业化。WDM技术是在同一根光纤上提供许多“虚”光纤,通过不同的频率传输信号,使网络供应商能在一根光纤中传输许多信号,就像每个信号是在各自不同的光纤中传输一样。光技术的使用强烈地依赖于光网络的类型和需求。近来,光通信技术的研究趋势已集中在新的光通信网络结构和宽带光传输技术两个领域。文中在分析研究光因特网网络模型的基础上,提出一种新型混合模型网络结构。模拟仿真研究结果表明,该技术是可行的。  相似文献   

14.
WDM光网络中的业务量疏导   总被引:1,自引:0,他引:1  
波分复用(WDM)技术在主干传送网中巳广泛应用,WDM光网络的研究进展也非常迅速,光网络中的业务量疏导定义为复用、解复用和交换低速率业务流到大容量的光路中的行为。介绍了WDM光网络的业务量疏导的重要性,研究方法及其最新研究进展情况。  相似文献   

15.
A dense wavelength-division-multiplexing (WDM) transmission system with very-high-speed channels was investigated experimentally. A 10-Gb/s four-channel WDM optical transmission (total capacity of 40 Gb/s) over a 40-km dispersion-shifted fiber was achieved by using hybrid-integrated DFB-LD/driver modules for transmitters and two cascaded semiconductor optical amplifier (SOA) modules for receivers. The experiment confirmed that the SOA is applicable for WDM transmission systems with high bit rates because of its inherent wide bandwidth. The transmission capacity of 40 Gb/s, achieved using an intensity modulation/direct detection (IM/DD) scheme, is the highest ever reported. This technology will make possible ultralarge capacity (up to several-hundred gigabits per second) and long-haul transmission systems in the future  相似文献   

16.
Optical communication plays a significant and increasing role in our society. The public demand for higher network speed requires an optical backbone network with larger capacity. Accompanying high transmission-rate optical communications system are severe technical specifications for optical devices and systems. Many popular optical devices could be represented with a digital filter model as described in this article. Use of well-developed signal processing techniques and algorithms to design these optical devices is a wise use of existing technology. The wavelength division multiplexing (WDM) system, which is the dominating optical communication system, is introduced in this article. Three signal processing application examples for optical communications are presented: optical wavelength interleaver, an all-pass filter for chromatic dispersion compensation, and an electronic equalizer. As demonstrated in this article, signal processing could play an important role in the development of advanced optical communication systems. However, as demonstrated in the case of an electronic equalizer, some optical system characteristics may require special attention if signal processing techniques are to be applied successfully. Therefore, interdisciplinary cooperation between researchers in optics and signal processing will be crucial for optical communications to fully benefit from signal processing.  相似文献   

17.
The potential of erbium-doped fiber amplifiers (EDFA) and wavelength-division multiplexing (WDM) technology for expanding transmission capacity in long-distance telecommunications is examined. Properties of EDFA are nearly ideal for application in lightwave long-haul transmission. Nonlinear effects in the transmission fiber and amplifier spontaneous emission noise limit the performance and therefore dictate the design of long-distance amplified systems, especially those employing WDM. The next-generation transoceanic system will use EDFA as repeaters, yielding a capacity almost ten times larger than what is available today. Multichannel WDM soliton transmission promises further substantial enhancement. Terrestrial long-haul networks will also benefit greatly from amplified WDM systems designed to mine the large inherent bandwidth in the embedded fiber. The ten- to fifty-fold capacity increase over present systems not only will provide for ample growth, but also will enable network operators to enhance operational flexibility and network functionality, and to facilitate a fast-recovery self-healing capability through cost-effective redundant routing  相似文献   

18.
In multi-domain wavelength-division-multiplexing (WDM) optical networks, the inter-domain routing is a challenge since each single-domain cannot view the full network topology. At the same time, survivability is also an important issue in optical networks since the failures of fiber links or network nodes may lead to a lot of traffic being blocked. In this paper, we study the survivability in multi-domain WDM optical networks, and propose a new survivable mechanism called load balanced domain-by-domain routing (LBDDR). In LBDDR, in order to obtain the efficient inter-domain survivable routes, we present the domain-by-domain routing (DDR) method which can find the intra-domain sub-working path and sub-backup path in each single-domain to form the inter-domain working path and backup path for each demand. In order to reduce the blocking probability, we present the load balanced routing method which can encourage the traffic to be uniformly distributed on the links with more free wavelengths. Simulation results show that, compared with conventional mechanism, LBDDR can obtain better performances.  相似文献   

19.
The total transmission capacity required by a transport network to satisfy demand and protect it from failures contributes significantly to its cost, especially in long-haul networks. Previously, the spare capacity of a network with a given set of working span sizes has been optimized to facilitate span restoration. Path restorable networks can, however, be even more efficient by defining the restoration problem from an end to end rerouting viewpoint. We provide a method for capacity optimization of path restorable networks which is applicable to both synchronous transfer mode (STM) and asynchronous transfer mode (ATM) virtual path (VP)-based restoration. Lower bounds on spare capacity requirements in span and path restorable networks are first compared, followed by an integer program formulation based on flow constraints which solves the spare and/or working capacity placement problem in either span or path restorable networks. The benefits of path and span restoration, and of jointly optimizing working path routing and spare capacity placement, are then analyzed  相似文献   

20.
提出了一种基于光载无线(ROF)技术的W波段涡旋毫 米波生成及轨道角动量(OAM)多维联合调制 /解调方法。采用ROF技术在光域对微波源进行倍频生成W 波段光学毫米波,并通 过集成光调制 器对光学毫米波的相位和幅度进行调控。通过合理调控圆环天线阵列(CAAs)的辐射毫米波 相移,从而实 现涡旋毫米波的生成以及状态切换。同时,设计了64阶OAM、幅度和 相位的三维联合调制格式, 并通过模拟仿真,成功实现了75Gbit/s高阶联合调制信号的调制/解 调。研究结果表明,OAM 作为一个新 的物理维度不仅可以通过复用来实现传输容量密度的提升,同时也可以作为调制手段实现 传输容量的提 升,在提高无线频谱效率以及保密通信中具有重要的潜在应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号