首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

To meet water demands, pressurised irrigation networks often need pumping devices, whose power demand varies with the pump head, the flow rate delivered and the pump efficiency. To satisfy the energy demand of pumps, solar photovoltaic panels can be used as a renewable energy source. Since the electricity supply of a solar photovoltaics plant depends on irradiance, the energy that powers the pump varies with the time of the day. This study presents a strategy for scheduling water delivery by irrigation pumps, synchronising energy production in solar photovoltaic modules and minimising the installation size. An optimisation algorithm is proposed, which changes the energy required by pumping devices and adjusts them to the available solar energy supply, minimising the number of panels required. This problem applies to a pressurised irrigation network, where the utility manager may irrigate crops at all hours of the day. By adopting the proposed algorithm, irrigation will follow a rigid rotation schedule to follow the new irrigation plan. This approach improves earlier studies by employing a least-square scheduling algorithm with little computing time. This results in a tool for managers and decision-makers when evaluating the possibility of converting their irrigation network into a stand-alone system supplied by photovoltaic panels. A case study handling this issue in the University of Alicante’s pressurised irrigation network in Spain is proposed to find potential energy savings by connecting the recommended scheduling irrigating plan to the present operation.

Graphical abstract
  相似文献   

2.

Mine water can be a renewable and economical source of geothermal and hydraulic energy. Nine discharges from closed and flooded coal mines in the Laciana Valley (León, NW Spain) have been studied. Various technologies for the energy use of mine water, as well as the influence of factors such as temperature, the need for water treatment, investment, potential customers and expansion capacity, have been evaluated by means of a decision-making tool. It is concluded that the most advantageous option is an open-loop geothermal system using the waters of a mountain mine, the temperature of which exceeds 14 °C and whose distance to customers is less than 2 km. A technical–economic viability study for a district heating network designed to supply heating and hot water to six public buildings in the nearby town of Villablino is presented. The proposed use of mine water might help areas that have been greatly affected socioeconomically by the closure of the mines and has other advantages compared to conventional energy systems, such as the reduction of CO2 emissions.

Graphical Abstract

It showing the advantages of using mine water as an energy source for district heating and a simplified layout.

  相似文献   

3.

Biomass waste contains an abundant source of energy that can be transformed into high-calorific fuel during intermediate pyrolysis, consequently reducing the use of fossil fuel resources. In the present study, medium density fibreboard (MDF), brewery spent grains (BSG) and post-extraction soybean meal (SM) were used to pyrolysis. Valorisation of these wastes via intermediate pyrolysis was carried out at a temperature of 773 K in a fixed-bed reactor under nitrogen atmosphere. The ultimate analysis showed that MDF char has offered the highest carbon content. Generally, chars obtained from these feedstocks were characterized by different internal microstructures. On the one hand, the surface of MDF char has exhibited pores with a regular pattern of small perpendicular blocks. On the other hand, irregular open spaces were detected in BSG and SM chars. The results of this investigation of the microstructure proved that the studied biomass wastes are perspective feedstocks to obtain high-value bioenergy products. Based on the enthalpy balance, it was concluded that the heating value of the pyrolysis gas was higher, the more endothermic pyrolysis process. The research hypothesis confirms that the higher the K2O/CaO ratio in the ash, the better biomass pyrolysis process was catalysed and as a result, less additional heat was required for pyrolysis. To carry out the pyrolysis of MDF, SM and BSG, additional heat input was required in the amount of 2016.8, 1467.9 and 881.1 kJ, respectively. It was found that 4–10% of the higher heating value of the raw materials was missing to achieve the self-sustaining energy of intermediate pyrolysis.

Graphical abstract
  相似文献   

4.

This study approximates the marginal abatement costs (MACs) of reducing GHG emissions in Canada using the shadow cost approach. Utilizing industry level data, we are the first to offer Canadian estimates based on a Hyperbolic Output Distance Function (HODF) and the stochastic frontier estimation. Accounting for GHG emissions caused by energy consumption, we obtain an average shadow MAC of $130/t across 30 industries. In the GHG-intensive industries such as the electric utilities and non-conventional oil extraction, MACs are lower than the CO2 levy of $50/t imposed by the federal government. Since these low-MACs sectors account for about 98 per cent of total GHG emissions and 94 per cent of total energy use in industries studied, the envisaged $50/t carbon levy could notionally result in a significant GHG abatement in Canada.

Graphical abstract

Estimated Marginal Abatement Costs by Sector

  相似文献   

5.

In this review, flat plate and concentrate-type solar collectors, integrated collector–storage systems, and solar water heaters combined with photovoltaic–thermal modules, solar-assisted heat pump solar water heaters, and solar water heaters using phase change materials are studied based on their thermal performance, cost, energy, and exergy efficiencies. The maximum water temperature and thermal efficiencies are enlisted to evaluate the thermal performance of the different solar water heaters. It is found that the solar water heaters’ performance is considerably improved by boosting water flow rate and tilt angle, modification of the shape and number of collectors, using wavy diffuse and electrodepositioned reflector coating, application of the corrugated absorber surface and coated absorber, use of turbulent enhancers, using thermal conductive working fluid and nanofluid, the inclusion of the water storage tank, and tank insulation. These items increase the heat transfer area and coefficient, thermal conductivity, the Reynolds and Nusselt numbers, heat transfer rate, and energy and exergy efficiencies. The evacuated tube heaters have a higher temperature compared to the collectors with a plane surface. Their thermal performance increases by using all-glass active circulation and heat pipe integration. The concentrative type of solar water heaters is superior to other solar heaters, particularly in achieving higher water temperatures. Their performance improves by using a rotating mirror concentrator. The integration of the system with energy storage components, phase change materials, or a heat pump provides a satisfactory performance over conventional solar water heaters.

Graphical abstract

Modification of solar water heaters

  相似文献   

6.

Carbon Integration methods help identify the appropriate allocation of captured carbon dioxide (CO2) streams into CO2-using sinks, and are especially useful when a number of CO2 sink options are present simultaneously. The method helps identify CO2 allocation scenarios when subjected to an emission target on the CO2 overall network. Many carbon dioxide sink options are costly, and more often than not, require a high purity carbon dioxide source to satisfy the sink demand. Hence, it is imperative to effectively incorporate treatment units in such networks, to obtain high-purity CO2 streams. In fact, it has been previously reported in many studies that the most expensive step in Carbon Capture, Utilization and Sequestration (CCUS) is the treatment system. As a result, this paper focuses on reassessing the performance of carbon integration networks using a more rigorous cost model for the treatment design stage. The effect of utilizing different treatment operating conditions on the overall cost of the treatment stage of CO2 (before allocation) is first captured using a detailed cost model. Subsequently, this information is then fed into a network design problem that involves a CO2 source-sink allocation network problem, and different CO2 net capture targets within the network. For this, an enhanced treatment model that captures all necessary treatment design parameters has been utilized alongside the original model. The original carbon integration formulation has been adopted from previous work. Many of the cost items have been lumped into single parameters in the original formulation, and lack the necessary depth required to carry out the necessary investigations for this work. Hence, the treatment model introduced in this paper is more rigorous, as it accounts for important technical performance constraints on the system to be assessed. Utilizing a more detailed cost model was found to be very helpful in understanding several effects of varying parameters on the overall source-sink allocations, when subjected to different CO2 net emission reduction targets. The cost of the carbon network increases when the solvent temperatures are increased. However, there was a noticeable linear trend at lower temperatures compared to higher temperatures, where the increase became non-linear. Furthermore, it was discovered that for net capture targets of 20% and 25%, no revenue from carbon storage could be generated beyond a solvent temperature of 25 °C. Additionally, the optimal diameter of the treatment column was more responsive to changes in solvent temperature for cases with low net capture targets (below 10%), while its sensitivity decreased for higher capture targets (above 10%).

Graphical Abstract
  相似文献   

7.

In the present work, we propose a green and sustainable strategy for eco-friendly surface modification of wool structure using biosynthesized kerationlytic proteases, from C4-ITA-EGY, Streptomyces harbinensis S11-ITA-EGY and Streptomyces carpaticus S33-ITA-EGY, followed by subsequent environmentally sound functionalization of the bio-treated substrates using ZnONPs, ZrO2NPs, ascorbic acid and vanillin, individually, to provide durable antibacterial as well as UV-protection properties. Both surface modification changes and the extent of functionalization of the final products were characterized by SEM, EDX, antibacterial efficacy, UV-blocking ability, loss in weight, nitrogen content and durability to washing analysis. The obtained data reveal that the developed green wool fabrics exhibit outstanding durable antibacterial activity and UV-blocking ability for fabricating multi-functional textile products that can be utilized in a wide range of sustainable protective textiles, irrespective of the used post-finishing formulation ingredients. The results also show that both modification and functionalization processes are governed by the type of enzyme and kind of active material respectively. Moreover, the biosynthesized kerationlytic proteases could be accessibly used to remove protein-based stains like blood and egg.

Graphical abstract
  相似文献   

8.

The use of fossil fuel-based vehicles may gradually be replaced by electric vehicles in the future. The trend indicates that the number of users of electric vehicles, especially electric cars, continues to increase. Indonesia is well-positioned to take advantage of this opportunity as it has the world’s largest nickel reserves, an essential raw material for making electric vehicle batteries (EVB). The study examines the economic and environmental implications if Indonesia were to successfully set up electric vehicle (EV) production rather than exporting such raw materials overseas. We use an input–output model to estimate electric vehicle production’s economic and environmental impacts in Indonesia. This study assumes that nickel, which is usually exported, is absorbed by domestic economic activities, including being used in manufacturing batteries and electric vehicles in Indonesia. Our estimates include direct and indirect output, value-added, and employment changes. The same model is also used to estimate changes in emissions’ environmental costs. It is evident from the results that batteries and EV production are economically beneficial. Additional value-added is Rp. 100.57 trillion, 1.5% of GDP in 2010. At the same time, 538,658 additional jobs were created, which is about a 0.5% increase. Lastly, EV production will have extra external costs of emissions, around Rp. 2.23 trillion, or an increase of about 0.6%. Based on these findings, it is concluded that electric vehicle production increases productivity, gross value-added, and job creation with a relatively small impact on the environment. A limitation of this study is that we assumed EVs were produced for export only, and we did not assume a reduction in economic activities in the supply chain of conventional vehicles.

Graphical Abstract

Economic and Environmental Impact of Electric Vehicles Production in Indonesia.

  相似文献   

9.

This paper studied the adsorption of chemical oxygen demand (COD), oil and turbidity of the produced water (PW) which accompanies the production and reconnaissance of oil after treating utilizing powdered activated carbon (PAC), clinoptilolite natural zeolite (CNZ) and synthetic zeolite type X (XSZ). Moreover, the paper deals with the comparison of pollutant removal over different adsorbents. Adsorption was executed in a batch adsorption system. The effects of adsorbent dosage, time, pH, oil concentration and temperature were studied in order to find the best operating conditions. The adsorption isotherm models of Langmuir, Freundlich and Temkin were investigated. Using pseudo-first-order and pseudo-second-order kinetic models, the kinetics of oil sorption and the shift in COD content on PAC and CNZ were investigated. At a PAC adsorbent dose of 0.25 g/100 mL, maximum oil removal efficiencies (99.57, 95.87 and 99.84 percent), COD and total petroleum hydrocarbon (TPH) were identified. Moreover, when zeolite X was used at a concentration of 0.25 g/100 mL, the highest turbidity removal efficiency (99.97%) was achieved. It is not dissimilar to what you would get with PAC (99.65 percent). In comparison with zeolites, the findings showed that adsorption over PAC is the most powerful method for removing organic contaminants from PW. In addition, recycling of the consumed adsorbents was carried out in this study to see whether the adsorbents could be reused. Chemical and thermal treatment will effectively regenerate and reuse powdered activated carbon and zeolites that have been eaten.

Graphic abstract
  相似文献   

10.
You  Wenwu  Tu  Datao  Li  Renfu  Zheng  Wei  Chen  Xueyuan 《Nano Research》2019,12(6):1417-1422

Lanthanide-based luminescent anti-counterfeiting materials are widely used in various kinds of products. However, the emission color of traditional lanthanide-based luminescent materials usually remains nearly unaltered upon different excitation lights, which may only work for single-level anti-counterfeiting. Herein, the NaYbF4:2%Er@NaYF4 core/shell nanoplates (NPs) with “chameleon-like” optical behavior are developed. These NPs display single-band red or green downshifting (DS) emission upon excitation at 377 or 490 nm, respectively. Upon 980 nm excitation, the color of upconversion (UC) emission can be finely tuned from green to yellow, and to red with increasing the excitation power density from 0.1 to 4.0 W/cm2. The proposed materials readily integrate the advantages of excitation wavelength-dependent DS single-band emissions and sensitive excitation power-dependent UC multicolor emissions in one and the same material, which has never been reported before. Particularly, the proposed NPs exhibit excellent performance as security labels on trademark tag and security ink on painting, thus revealing the great potential of these lanthanide-doped fluoride NPs in multilevel anti-counterfeiting applications.

  相似文献   

11.
Zhang  Guobin  Xiong  Tengfei  Pan  Xuelei  Zhao  Yunlong  Yan  Mengyu  Zhang  Haining  Wu  Buke  Zhao  Kangning  Mai  Liqiang 《Nano Research》2019,12(4):905-910

Subtle structural changes during electrochemical processes often relate to the degradation of electrode materials. Characterizing the minute-variations in complementary aspects such as crystal structure, chemical bonds, and electron/ion conductivity will give an in-depth understanding on the reaction mechanism of electrode materials, as well as revealing pathways for optimization. Here, vanadium pentoxide (V2O5), a typical cathode material suffering from severe capacity decay during cycling, is characterized by in-situ X-ray diffraction (XRD) and in-situ Raman spectroscopy combined with electrochemical tests. The phase transitions of V2O5 within the 0–1 Li/V ratio are characterized in detail. The V–O and V–V distances became more extended and shrank compared to the original ones after charge/discharge process, respectively. Combined with electrochemical tests, these variations are vital to the crystal structure cracking, which is linked with capacity fading. This work demonstrates that chemical bond changes between the transition metal and oxygen upon cycling serve as the origin of the capacity fading.

  相似文献   

12.

Construction and demolition waste generated in the Republic of Korea accounts for about half of the annual waste. The generation of construction waste is expected to increase gradually due to obsolete structures and reconstructions that have reached the end of their service life. Considering the geographical characteristics of Korea, where the land area is small and about 70% of which is mountainous, landfilling of waste is absolutely limited. Therefore, resource circulation such as recycling of construction waste is an urgent and important task. This paper overviews the current status of construction waste generation, treatment, and the flow of government policies in Korea. Furthermore, the current status, limitations, and stakeholder efforts regarding recycling of recycled aggregate from construction waste were reviewed. Data used in this paper were mostly collected from government reports, construction waste regulations, and research papers. The results show that construction waste management systems have been enacted and revised in line with social needs, and each stakeholder is making an effort to use the construction waste practically. The findings can provide valuable examples for countries that lack construction waste management systems.

Graphic abstract
  相似文献   

13.

In surface mining, blast-induced dust can be discharged to the atmosphere and impact the surrounding environment and nearby residential areas, especially if a large volume of rock is blasted under inappropriate meteorological conditions such as high wind speed. Many attempts have been done to predict the blast-induced dust emission distance but the literature of the dust reduction is limited to change stemming materials based on water capsules. This study develops a methodology using gene expression programming and grasshopper optimization algorithm to find an optimal blasting plan with minimum blast-induced dust in a mine close to sensitive ecosystem and residential areas. The best gene expression programming model, which indicates relationship between dependent and independent variables, was first determined based on 100 blasting data collected from the mine. The model with the R2 of 0.9559 and 0.9145, respectively, for training and validating parts was chosen as the best model. The model, as an objective function, was considered in grasshopper optimization algorithm to find the optimal blasting plan with minimum dust emission level. Compared to the old blasting plans of the mine, the optimal plan resulted in a reduction of 76.82% in the emission distance of the blast-induced under constant meteorological conditions. Sensitivity analysis on the system parameters revealed the high sensitivity of the output to wind speed, air temperature, air humidity, powder factor, and stemming.

Graphical abstract
  相似文献   

14.

Air pollution monitoring is constantly increasing, giving more and more attention to its consequences on human health. Since Nitrogen dioxide (NO2) and sulfur dioxide (SO2) are the major pollutants, various models have been developed on predicting their potential damages. Nevertheless, providing precise predictions is almost impossible. In this study, a new hybrid intelligent model based on long short-term memory (LSTM) and multi-verse optimization algorithm (MVO) has been developed to predict and analysis the air pollution obtained from Combined Cycle Power Plants. In the proposed model, long short-term memory model is a forecaster engine to predict the amount of produced NO2 and SO2 by the Combined Cycle Power Plant, where the MVO algorithm is used to optimize the LSTM parameters in order to achieve a lower forecasting error. In addition, in order to evaluate the proposed model performance, the model has been applied using real data from a Combined Cycle Power Plant in Kerman, Iran. The datasets include wind speed, air temperature, NO2, and SO2 for five months (May–September 2019) with a time step of 3-h. In addition, the model has been tested based on two different types of input parameters: type (1) includes wind speed, air temperature, and different lagged values of the output variables (NO2 and SO2); type (2) includes just lagged values of the output variables (NO2 and SO2). The obtained results show that the proposed model has higher accuracy than other combined forecasting benchmark models (ENN-PSO, ENN-MVO, and LSTM-PSO) considering different network input variables.

Graphic abstract
  相似文献   

15.
Li  Hao  Chen  Liwei  Zhou  Qianyun  Qiu  Di  Zhang  Genlin  Dang  Yanyan 《Journal of Materials Science》2022,57(26):12497-12510

Licorice residue, a considerable amount of biomass waste discarded during the excellent extraction process of traditional Chinese medicine every year, is a potential low-cost and green material for the synthesis of porous carbon material. In this work, spinel phase NiCo2O4 nanosheets were produced on the licorice residue-derived nitrogen-doped carbon aerogel (LNCA) using simple hydrothermal and calcination methods. LNCA was first prepared from the carbonation of freeze-dried licorice residue aerogel, which was subsequently utilized to prepare an LNCA/NiCo2O4 composite employing hydrothermal reaction and annealing treatment. As a consequence of its properties, the as-prepared hybrid electrode exhibited ultrahigh capacitance specific capacity (956 F g?1 at 1 A g?1) and long-term stability. This work provides some new insights on the preparation of biomass-derived porous carbon for application in supercapacitors, as well as multifaced considerations.

Graphical abstract
  相似文献   

16.

The different energy transition efforts in the EU-27 countries are analysed, paying special attention to the achievement of set energy targets and the real influence on energy dependence and GHG reduction. Various methodologies were used, ranging from construction of timelines to geo-statistical analysis using Geographic Information Systems (GIS) and the implementation of machine learning techniques and models, using R. The results show how different modifications of the energy saving and efficiency targets, along with lower power consumption due to the COVID pandemic, resulted in that although most of the EU-27 countries have achieved their saving and efficiency targets, this has not been reflected in a real reduction in consumption (compared to 1990 levels). In addition, the fulfilment of the objectives has not resulted in a reduction in energy dependence, generating a false sense of security and satisfaction in the fulfilment of the targets. Concerning GHGs, almost all EU-27 countries decrease their GHG emissions per capita compared to 2000 (with the exception of Lithuania, Bulgaria, Croatia and Latvia), with this decrease being mainly related to the fulfilment of renewable energy targets in transport. The conclusion highlights the need to make greater efforts to achieve saving and efficiency in the near future; otherwise, higher power consumption via renewable energy sources, while helping meet future increases in energy demand, will not impact the reduction in energy dependence compared to current levels.

Graphical abstract

Achievement of energy transition targets. Contribution to the reduction in greenhouse gases and energy dependence.

  相似文献   

17.

The growing global economy resulted in an incessant increase in transportation and exploitation of oil. Hence, the oil spillage has been considered a serious threat to aquatic and terrestrial ecosystems. Therefore, water purification has been considered a major challenge around the world. There are numerous classical methods available for oil removal from water, but owing to multiple defects and disadvantages, research efforts have focused to find such adsorbents which can improve oil adsorption capability. Traditional adsorbent material typically applied in oil removal includes activated carbon, organoclays, wool, zeolites, etc. These materials suffer from several drawbacks such as low absorption capacity, non-selective absorption, and complicated reusability, whereas nano-adsorbents offer multiple advantages such as having multiple sorption sites, large surface area, short intra-particle diffusion distance, tuneable pore size, and ease of low-temperature modification. Multi-walled carbon nanotubes (MWCNTs) are extensively used adsorbent materials with a strong affinity for the removal of organic pollutants. The functionalization MWCNTs further increase the sorption capacity of adsorbents manifolds to remove organic materials. These nanocomposites are also compatible with green materials and considered environmentally friendly adsorbents. This review paper aims at providing an insight to understand the properties of the MWCNTs and their potential use to adsorb hydrocarbons from water. Moreover, the synthesis methods of those materials, their modification procedures including the functionalization with metal oxide nanoparticles, and applications are also discussed in detail.

Graphic abstract
  相似文献   

18.
Li  Guangchao  Yin  Zhoulan  Dai  Yuqing  You  Bianzheng  Guo  Huajun  Wang  Zhixing  Yan  Guochun  Liu  Yong  Wang  Jiexi 《Nano Research》2020,13(11):2909-2916

Porous graphitic carbon nanorings (PGCNs) are proposed by smart catalytic graphitization of nano-sized graphene quantum dots (GQDs). The as-prepared PGCNs show unique ring-like morphology with diameter around 10 nm, and demonstrate extraordinary mesoporous structure, controllable graphitization degree and highly defective nature. The mechanism from GQDs to PGCNs is proven to be a dissolution-precipitation process, undergoing the procedure of amorphous carbon, intermediate phase, graphitic carbon nanorings and graphitic carbon nanosheets. Further, the relationship between particles size of GQDs precursor and graphitization degree of PGCNs products is revealed. The unique microstructure implies PGCNs a broad prospect for energy storage application. When applied as negative electrode materials in dual-carbon lithium-ion capacitors, high energy density (77.6 Wh·kg−1) and super long lifespan (89.5% retention after 40,000 cycles at 5.0 A·g−1) are obtained. The energy density still maintains at 24.5 Wh·kg−1 even at the power density of 14.1 kW·kg−1, demonstrating excellent rate capability. The distinct microstructure of PGCNs together with the strategy for catalytic conversion from nanocarbon precursors to carbon nanorings opens a new window for carbon materials in electrochemical energy storage.

  相似文献   

19.

Tuning of porosity and surface properties of nanoparticles especially on carbon-based nanomaterials, adopting a ‘greener’ or self-activation synthesis technique for electrical charge storage, is progressing. Herein, we report the self-activation of Teak wood sawdust in a nitrogen atmosphere at different activation temperatures to synthesize carbon nanoparticles. The activated carbon nanoparticles synthesized at 900 °C exhibits a maximum?~?360 m2 g?1 surface area with?~?2 nm average pore size diameter. Five electrolytes viz. KOH, KCl, Na2SO4, NaCl, and H3PO4 are used for studying the supercapacitance nature of the activated carbon nanoparticles in a 3-electrode configuration. A maximum specific capacitance of?~?208 F g?1 @ 0.25 A g?1 is obtained in 1 M KOH as the electrolyte. Two symmetric supercapacitors, aqueous (1 M KOH) and solid-state (PVA/KOH), are fabricated, and their performance difference is compiled. The solid-state symmetric supercapacitor performs in a wider voltage window (1.7 V) with a superior energy density of 27.1 Wh kg?1 at a power density of 178 W kg?1.

Graphical abstract
  相似文献   

20.

Electric vehicles must be widely accepted because of environmental concerns and carbon restrictions. Previous research has looked at consumer policy preferences and their influence on electric vehicle adoption. However, none have investigated the impact of policies linked to battery recycling on electric vehicle adoption. This study used a discrete choice model (the panel-data mixed logit model) to evaluate 552 actual consumer choice data from Southwest China collected via an online questionnaire. Our results indicate that (1) 75% of respondents feel that electric vehicles enhance the environment and are eager to embrace them. However, the lack of strong recycling policies may hinder their adoption of electric vehicles. Specifically, the four battery recycling policies significantly impact electric vehicle adoption. (2) Consumers appreciate producer-oriented incentives more than consumer-oriented incentives to a lesser extent, such as mandated battery recycling policies and electric vehicle battery flow tracing policies. (3) Consumers place a larger willingness to pay on charging station density than vehicle attributes. (4) Regarding consumer heterogeneity, the usual young group in higher-rated cities prefers electric vehicles, while customers who own a car are more inclined to buy electric vehicles. Finally, more management insights and policy recommendations are provided based on these findings to help government and producer policymakers.

Graphical abstract
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号