首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
研究了以双环戊二烯为原料合成戊二醛的工艺,主要内容包括:双环戊二烯解聚制环戊二烯;环戊二烯加氢制环戊烯;环戊烯均相氧化制戊二醛。双环戊二烯解聚率为95%以上,环戊二烯的收率可达90%。二聚产物经过精馏可获得高纯度产品。环戊二烯加氢制环戊烯的研究采用二段加氢工艺,以环戊烷为溶剂,考察了主催化剂钯的含量和载体的影响,确定了以0.5%的Pd/γ-Al2O3为加氢催化剂及温度、压力、氢烃比和空速等相应的加氢工艺条件,得到环戊二烯转化率达99.5%,环戊烯选择性90%以上,加氢产品中环戊二烯含量小于0.1%的良好结果,为工业化放大提供了基础数据。采用钨酸为催化剂,叔丁醇为溶剂,50%过氧化氢为氧化剂,对环戊烯氧化制备戊二醛进行了研究,研究结果表明戊二醛的收率可达65%。  相似文献   

2.
C4馏分选择加氢脱除丁二烯研究   总被引:3,自引:0,他引:3  
采用Pd-Cr/ZnO双金属催化剂,研究了温度、压力、气体空速等操作条件对炼化厂C4馏分中杂质丁二烯气相单段床选择加氢反应的影响。结果表明,在压力为0.3~0.5 MPa,温度为130~150℃,n(H2)/n(丁二烯)=3.0~4.0,气体空速为900~1100 h^-1的最佳工艺条件下,丁二烯转化率大于98%,加氢选择性大于90%。  相似文献   

3.
将裂解C5馏分资源经选择性加氢、醚化,合成了高辛烷值汽油调和组分。为满足醚化催化剂的要求,进行了蒸汽裂解C5双烯烃选择性加氢工艺研究,对裂解C5双烯烃选择性加氢催化剂进行了评价,考察了反应压力、空速、反应温度、氢烯摩尔比对双烯烃选择性加氢的影响,得出适宜工艺条件为:反应压力0.5~1.5 MPa,温度45~80℃,空速10~2.0 h-1 ,氢烯摩尔比大于1.1。  相似文献   

4.
炼油厂 C4馏分加氢生产优质蒸汽裂解料的研究   总被引:8,自引:1,他引:7  
采用NCG催化剂,对3个炼油厂的混合C4馏分进行了加氢工艺条件考察,确定了适宜的C4馏分加氢饱和工艺条件,并进行了NCG催化剂1500h寿命评价试验。结果表明,采用NCG催化剂,在温度180-220℃、压力2.0MPa,氢烃体积比100-150:1及体积空速2.0h^-1的反应条件下,对混合C4馏分进行加氢饱和,产品C4中C4^=含量不大于1.0%,是蒸汽裂解乙烯的优质原料。  相似文献   

5.
研究了原位溶胶一凝胶镀膜法制备NiO-TiO2/ZSM-5催化剂的制备工艺和条件对催化剂性能的影响。实验结果表明,NiO-TiO2/ZSM-5催化剂克服了NiO-TiO2-SiO:催化剂对孑L结构过分依赖的缺点,在喷气燃料加氢中显示出了很高的加氢脱芳性能。该催化剂加氢脱芳反应适宜的催化剂的还原温度在380~400℃,Ni与Ti摩尔比为3.43~6.52,并且反应温度范围较宽,当压力大于1.2MPa,镍含量大于6.0%时,压力和空速的变化对催化剂加氢脱芳性能的影响不明显。在反应温度180℃、压力1.2MPa、LHSV2.0h、氢油体积比500:1的条件下,该催化剂表现出较好的脱芳烃活性和稳定性,产品中的芳烃含量低于100μg/g。  相似文献   

6.
环戊二烯选择加氢工艺及动力学研究   总被引:4,自引:0,他引:4  
选用一种工业催化剂研究了环戊二烯加氢制环戊烯的工艺条件 ,并进行了宏观动力学实验。采用两段工艺 ,在 0 .4MPa下 ,研究了温度、氢比、空速对选择性及转化率的影响 ,对 32组实验数据进行了回归 ,得到了加氢动力学方程 ,能较好地模拟环戊二烯加氢过程。  相似文献   

7.
以丁二酸二乙酯为原料,CuO-ZnO-Al_2O_3为催化剂,催化加氢制备了1,4-丁二醇。考察了反应温度、反应压力、氢酯摩尔比、液时空速对加氢反应的影响。较佳工艺条件为:反应温度200~220℃,反应压力4.0~6.0 MPa,氢酯摩尔比为150~250,丁二酸二乙酯的液时空速为0.1~0.4 h~(-1)。在此条件下,丁二酸二乙酯的转化率大于95%,1,4-丁二醇的选择性大于90%。  相似文献   

8.
在高压微反色谱装置上评价了 NiMo/Hβ催化剂的性能,考察了催化剂的还原条件及反应温度、压力、氢/烃摩尔比、质量空速等因素对异构化反应的影响。实验结果表明,450℃还原时,催化剂的催化性能较高;在反应温度280℃、压力1.5 MPa、质量空速2 h-1、氢/烃摩尔比为4的较优实验条件下,正戊烷的转化率为71.52%,反应的选择性为93.88%,异构烃的收率为67.10%,液体烃的收率为95.57%。100 h寿命实验表明,催化剂性能稳定,活性、选择性未见明显下降。  相似文献   

9.
以工业萘为原料,采用固定床加氢工艺和镍钨催化剂制备十氢萘。考察了温度、压力、空速、氢油体积比对催化活性的影响,适宜工艺条件为:反应温度280℃、压力7 MPa、体积空速1.0h-1、氢油体积比800∶1,在此条件下,萘转化率接近100%,十氢萘选择性90%。连续运行1 000h,催化剂仍具有优异的加氢活性。  相似文献   

10.
以TiO_2-Al_2O_3复合氧化物为载体,Ni为主活性组分,依次考察了Ni的负载量、助剂金属(Co、Cu、Zn、La和Ag)的种类和含量对催化剂催化环戊二烯选择加氢反应的影响。实验结果表明,5种助剂中,Ag可以最大程度地提升Ni/TiO_2-Al_2O_3催化剂的选择加氢活性和提高环戊二烯的转化率及环戊烯的选择性。催化剂的Ni负载量为15%,Ag助剂的加入量为3.0%时,在反应温度45℃、反应压力0.5 MPa、氢/烃(摩尔比)1.2、液体体积空速8.0h~(-1)的条件下,环戊二烯的转化率大于92.5%,环戊烯的选择性大于91.5%。催化剂在200h稳定性考察实验中,呈现较好的稳定性。BET测试结果表明,Ag-Ni/TiO_2-Al_2O_3催化剂的比表面积为142.7m~2/g,孔体积为0.41mL/g,孔集中分布在4~9nm之间,最可几孔径为7.1nm;XRD测试结果表明,Ag助剂的加入使NiO的晶粒变小并在载体表面分散的更均匀,而使TiO_2的晶粒变大并在载体表面聚集,减弱了NiO与载体中TiO_2的相互作用;TPR测试结果表明,Ag助剂的加入使催化剂的氢还原峰向低温方向移动了80℃以上,使催化剂更容易还原活化。  相似文献   

11.
催化裂化轻汽油中3-甲基-1-丁烯加氢异构化反应   总被引:1,自引:0,他引:1  
以催化裂化全馏分汽油中分离出低于70℃的轻汽油为原料,采用镍基LNEH-1催化剂,研究了加氢和异构化反应规律。结果表明,在反应温度为60℃,氢气/原料油(体积比)为30,反应压力为1.5 MPa,进料空速为2 h-1的条件下,轻汽油中二烯烃质量分数从0.34%降低到0,加氢转化率达到100%;3-甲基-1-丁烯异构转化率为86.25%;叔碳烯烃质量分数由19.43%增到21.00%。  相似文献   

12.
在固定床微型反应器中,采用HZSM-5催化剂,对催化裂化干气中乙烯低聚反应进行了研究。结果表明,通过优化反应条件可以达到提高乙烯利用率或提高丙烯收率的目的。使用HZSM-5新鲜催化剂,在温度为400℃,压力为0.1MPa,空速为18h。的条件下,可获得82.28%的乙烯转化率,此时液化气收率为34.46%。使用老化HZSM-5催化剂,在温度为550℃,压力为0.3MPa,总空速为18h^-1,氮气/干气(体积比)为1.0的条件下,乙烯转化率为49.79%,液化气收率为27.33%,丙烯收率为14.47%。  相似文献   

13.
通过将乙苯(EB)脱烷基化催化剂和二甲苯异构化催化剂合理复配,开发了一种复合型C8芳烃异构化催化剂。利用实验室固定床反应器,在反应温度为380~420℃,反应压力为1.6 MPa,空速为3~15 h-1,氢烃摩尔比小于2.0的条件下,对所制备催化剂的反应性能进行了评价。结果表明,EB转化率大于60.00%,芳烃二甲苯异构化率大于23.00%,收率大于97.50%,损失率小于2.00%。  相似文献   

14.
草酸二甲酯加氢合成乙二醇反应的研究   总被引:7,自引:2,他引:5  
在微型管式反应器中,采用Cu/SiO2催化剂,在温度190~210℃、压力1~3MPa、草酸二甲酯(DMO)与氢气的摩尔比(氢酯比)40~120、DMO空速6.0~25.0mmol/(g.h)的条件下,对DMO加氢制乙二醇的反应进行了研究。实验结果表明,高温、高压、高氢酯比和低DMO空速都能提高DMO的转化率和乙二醇的收率,但同时也增加了副产物的选择性。较适合的反应条件为:压力2MPa,温度205~210℃,氢酯比80~100,DMO空速10.0mmol/(g.h)。动力学研究表明,DMO加氢反应符合Langmuir-Hinshelwood吸附反应动力学模型,表面反应为速率控制步骤,氢气不解离吸附,由此得到了相应的动力学方程及参数。统计检验结果表明,该模型对DMO加氢反应高度适定。  相似文献   

15.
摘要分析了金陵石化分公司烷基苯厂加氢装置煤油除氧单元生产运行情况,对除氧单元运行中存在的进料换热器频繁结焦问题进行工艺设计改进,将原精馏除氧改为加氢除氧,在加氢除氧反应温度50℃,压力0.5MPa(G),空速20h^-1,氢油体积比2.8的条件下,除氧率达到95%,解决了频繁清洗换热器的问题。  相似文献   

16.
以钼酸铵、硝酸铈为原料,硅胶为载体,采用浸渍法制备了不同负载量的MoCexOy催化剂。在丙烷氧化脱氢制丙烯固定床反应器中,评价了催化剂的性能。结果表明,最佳工艺条件为:Ce离子/Mo离子(摩尔比)0.15,负载量(质量分数)10%,反应温度420℃,空速120h^-1。在此条件下,丙烷转化率为11.2%,丙烯选择性为94.5%。  相似文献   

17.
以不同组成的碳四烃为原料,采用碳四低温芳构化生产高辛烷值汽油技术,在反应压力为2.0 MPa,反应温度为340~400℃,体积空速为1.0 h-1,氢气/原料油(简称氢油比,质量比,下同)为50∶1的条件下,考察SHY-DL催化剂对芳构化液相产物的影响。结果表明,各试样碳四烯烃转化率均大于99%;随着反应温度的升高,各试样碳五以上液体收率在380℃时达到最大值,汽油中芳烃质量分数提高,液相中汽油收率降低。以碳四烯烃质量分数为55.69%的碳四烃为原料,在反应温度为360℃,反应压力为2.0 MPa,体积空速为1.0 h-1,氢油比为50∶1的条件下,SHY-DL催化剂经过1 200 h的长周期运行表明,其活性与稳定性未见明显衰减。  相似文献   

18.
以催化重整石脑油为原料,水热处理磷改性HZSM-5分子筛为催化剂,考察了改性催化剂的催化裂解性能。结果表明,催化剂最佳改性条件为:水热处理温度700℃,处理时间1 h,处理空速2 h-1。最佳反应条件为:温度650℃,液体空速4 h-1,水/原料油(体积比)0.75,压力0.2 MPa。在此条件下,与未改性HZSM-5分子筛催化剂相比,改性者水热稳定性增强,丙烯收率提高;在磷负载质量分数为3%时,丙烯收率最高,达到22.62%。  相似文献   

19.
采用浸渍法制备出Cu-Ni/Al2O3催化剂。研究了催化剂还原温度及加氢反应条件对乙炔加氢反应的影响。结果表明,催化剂最佳还原温度为400℃。当最佳加氢反应条件为温度55℃,空速7 000 h-1,H2/C2H2(摩尔比)2.00时,乙炔转化率、乙烯选择性和收率分别为89.34%,84.48%,75.48%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号