共查询到19条相似文献,搜索用时 42 毫秒
1.
为了改善传统卡尔曼滤波算法估计SOC时量测噪声的影响,提出了将传统卡尔曼滤波算法与模糊控制相结合的动力电池SOC的自适应估计方法。通过实时监控量测噪声实际方差与理论方差之间的差值,实现对量测噪声协方差矩阵的实时在线调整,提高算法在实际应用中的鲁棒性。通过基于联邦城市行驶工况(FUDS)验证混合算法的有效性。结果表明,基于模糊卡尔曼滤波算法的SOC估计最大误差仅为0.21%,高于传统卡尔曼滤波估计精度最大误差0.53%。仿真结果表明,该方法可以有效解决传统卡尔曼滤波算法估计不准和累计误差的问题。 相似文献
2.
3.
基于SOC-OCV曲线的卡尔曼滤波法SOC估计 总被引:1,自引:0,他引:1
由于开路电压(OCV)与电池荷电状态(SOC)存在一一对应的关系,OCV在电池SOC估计中被广泛运用。提出了如何通过卡尔曼滤波法(KMF)得到各种工作状态下PNGV电池模型中各状态量的值,从而得到PNGV电池模型的实时OCV,进而通过已经获得的SOC-OCV曲线得到电池SOC的预测值方法。给出了铅碳电池建模及参数辩识的方法及步骤,建立了参数随SOC可变的铅碳电池PNGV模型,并通过模型提出了用于OCV计算的KMF,该算法能快速并准确的收敛到真实的OCV,从而实时指示SOC,仿真和实验结果显示该方法具有较好的SOC估算效果及快速的动态响应。 相似文献
4.
5.
6.
基于迭代扩展卡尔曼滤波算法的电池SOC估算 总被引:1,自引:0,他引:1
采用卡尔曼滤波算法估算动力电池的荷电状态(SOC),其估算精度与SOC初值无关,但与动力电池的等效模型有关。为进一步提高SOC估算精度,充分考虑温度对电池模型参数的影响,改进电池的二阶RC等效电路模型,建立电池的非线性状态空间模型;为保证SOC估算结果的收敛性,将迭代滤波理论引入到扩展卡尔曼滤波(EKF)算法中;采用Levenberg—Marquardt(LM)方法优化迭代过程,并将其应用于动力电池SOC的估计。实验结果表明,与EKF和迭代EKF(IEKF)算法相比,采用改进的电池等效模型和优化算法,具有较好的收敛性,且提高了估算SOC的精度。 相似文献
8.
电池的荷电状态(SOC)是电池管理系统(BMS)的重要指标,然而锂离子电池是一个具有复杂性噪声特点的非线性动态系统,精准估计SOC十分困难。针对无迹卡尔曼滤波(UKF)估计SOC时受模型精度和系统噪声预定变量影响较大问题,基于改进的PNGV模型提出一种两次非线性变换预测系统闭环端电压方法,采用动态函数提高卡尔曼增益,从而提高SOC估计精度和效果。通过充放电混合动力脉冲能力特性(HPPC)和混合放电比实验验证可得该方法具有良好的估计效果,在电压和电流变化剧烈的条件下,平均绝对误差为0.11%,精度相对提高了58%,均方根误差为0.15%,稳定性相对提高了63%。 相似文献
9.
以锂电池的荷电状态估算为目的,对传统锂电池等效电路模型进行改进,提高了模型的准确性,使之能更好地反应锂电池内部状态。以标称容量为2 000 m Ah,额定电压为3.7 V的18650锂电池作为研究对象,采用最小二乘法分别对该锂电池模型进行充放电方向的参数辨识。运用双卡尔曼滤波算法估算锂电池的SOC,并设计了基于安时计量法的相关测试实验。研究结果表明,双卡尔曼滤波算法估算18650锂电池SOC的绝对误差值小于0.019,具有较高的估算精度,在锂电池SOC估算领域内具有很高的实用价值。 相似文献
10.
11.
考虑到传统的卡尔曼滤波策略在未知干扰噪声环境下不能对锂离子电池的荷电状态(SOC)进行准确的估计,简要论述了锂离子电池的等效电路模型,提出了自适应卡尔曼滤波方法,利用Matlab/Simulink建立了基于自适应和常规的卡尔曼滤波法的锂离子电池SOC估计的仿真模型,分析研究了在未知干扰噪声下两种滤波法的SOC估计值变化曲线以及误差关系。仿真结果表明,采用自适应卡尔曼滤波方法估计的SOC误差较传统的要小,从而有效降低了未知干扰噪声对电池管理系统所受到的影响,且具有较好的鲁棒性,为今后深入研究动力电池SOC估计方法提供了一定的参考。 相似文献
12.
This paper proposes a method of accurately estimating the state of charge (SOC) of rechargeable batteries in high fuel efficiency vehicles, such as hybrid electric vehicles (HEVs) and electric vehicles (EVs). Despite the importance of accurately estimating the SOC of batteries to achieve maximum efficiency and safety, no method thus far has been able to do so. This paper focuses on the simplification of a battery model, estimation of time‐varying battery parameters, and estimation of SOC in the presence of measurement noise. To address these three issues, a model‐based approach that uses a cascaded combination of two Kalman filters, “series Kalman filters,” is proposed and implemented. This approach is verified by performing a series of simulations in an HEV operating environment. The ultimate goal is to design a state estimator capable of accurately estimating the state of any kind of batteries under every possible user condition. © 2014 Wiley Periodicals, Inc. Electr Eng Jpn, 187(2): 53–62, 2014; Published online in Wiley Online Library ( wileyonlinelibrary.com ). DOI 10.1002/eej.22511 相似文献
13.
14.
15.
以锂电池电化学-电路等效组合模型为基础,研究电池荷电状态(SOC)和健康状况(SOH)联合估计算法。电池组合模型包含电化学等效模型和电路等效模型两部分,两个RC并联电路分别表示电池工作过程中的瞬态响应和稳态响应。针对电池模型参数和性能参数的非线性特征,提出基于滑动窗滤波模型的非线性参数估计方法,该方法适用于锂电池的管理系统。同时,在模型参数和性能参数估计值的基础上,提出基于Kalman算法的电池SOC/SOH自适应在线联合估计方法。实验结果显示,新算法较好地解决了锂电池非线性模型引起的计算误差,保证电池SOC/SOH估计结果的实时性和有效性。 相似文献
16.
磷酸铁锂动力电池是矿用救生舱的重要组成部分,其电荷状态(SOC)估计的准确性直接影响避难人员的安危。针对电池SOC常用估算方法的不足,提出一种基于自适应卡尔曼滤波的矿用救生舱动力电池SOC估算方法。在电池特性分析的基础上,建立了更符合实际的改进二阶RC等效电池模型和电池的状态空间模型。通过脉冲放电实验和改进的带遗忘因子递推最小二乘算法,对模型参数进行在线辨识,并将自适应卡尔曼滤波算法(AKF)用于此模型,在线估计电池的SOC。实验结果表明:AKF可以实时修正模型误差,实时估计SOC的动态变化,估算精度高,能够满足矿用救生舱电池管理系统的要求。 相似文献
17.
通过对电动车用MH-Ni电池的开路电压、充放电电流、温度、自放电等因素的研究,建立了一种适用于MH-Ni电池的荷电量状态的数学模型。在初始状态,采用开路电压以及系统存储值,来估算初始电量;在充放电过程中采用电流积分法,并结合各种修正系数来估算过程电量。该方法成功地应用于纯电动车和混合电动车镍氢电池的管理系统中,电量估算误差小于7%。 相似文献
18.
19.
本文应用自适应估计理论,提出了一种指数渐消因子自适应算法。该算法通过实测残差与理论残差的比值来确定指数方程的系数,调节自适应渐消因子,保证了滤波的稳定性,提高了滤波精度,并且冲破了经验储备系数的限制。最后对比其他三种自适应滤波算法进行了仿真比较,仿真结果表明,指数渐消因子自适应滤波算法是一种实用而有效的算法。 相似文献