首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermoelectric materials are attractive since they can recover waste heat directly in the form of electricity. In this study, the thermoelectric properties of ternary rare-earth sulfides LaGd1+x S3 (x = 0.00 to 0.03) and SmGd1+x S3 (x = 0.00 to 0.06) were investigated over the temperature range of 300 K to 953 K. These sulfides were prepared by CS2 sulfurization, and samples were consolidated by pressure-assisted sintering to obtain dense compacts. The sintered compacts of LaGd1+x S3 were n-type metal-like conductors with a thermal conductivity of less than 1.7 W K−1 m−1. Their thermoelectric figure of merit ZT was improved by tuning the chemical composition (self-doping). The optimized ZT value of 0.4 was obtained in LaGd1.02S3 at 953 K. The sintered compacts of SmGd1+x S3 were n-type hopping conductors with a thermal conductivity of less than 0.8 W K−1 m−1. Their ZT value increased significantly with temperature. In SmGd1+x S3, the ZT value of 0.3 was attained at 953 K.  相似文献   

2.
Ternary rare-earth sulfides NdGd1+x S3, where 0 ≤ x ≤ 0.08, were prepared by sulfurizing Ln2O3 (Ln = Nd, Gd) with CS2 gas, followed by reaction sintering. The sintered samples have full density and homogeneous compositions. The Seebeck coefficient, electrical resistivity, and thermal conductivity were measured over the temperature range of 300 K to 950 K. All the sintered samples exhibit a negative Seebeck coefficient. The magnitude of the Seebeck coefficient and the electrical resistivity decrease systematically with increasing Gd content. The thermal conductivity of all the sintered samples is less than 1.9 W K−1 m−1. The highest figure of merit ZT of 0.51 was found in NdGd1.02S3 at 950 K.  相似文献   

3.
n-Type Bi2Te3 nanocomposites with enhanced figure of merit, ZT, were fabricated by a simple, high-throughput method of mixing nanostructured Bi2Te3 particles obtained through melt spinning with micron-sized particles. Moderately high power factors were retained, while the thermal conductivity of the nanocomposites was found to decrease with increasing weight percent of nanoinclusions. The peak ZT values for all the nanocomposites were above 1.1, and the maximum shifted to higher temperature with increasing amount of nanoinclusions. A maximum ZT of 1.18 at 42°C was obtained for the 10 wt.% nanocomposite, which is a 43% increase over the bulk sample at the same temperature. This is the highest ZT reported for n-type Bi2Te3 binary material, and higher ZT values are expected if state-of-the-art Bi2Te3−x Se x materials are used.  相似文献   

4.
A mechanical alloying (MA) process to transform elemental powders into solid Pb0.5Sn0.5Te with thermoelectric functionality comparable to melt-alloyed material is described. The room-temperature doping level and mobility as well as temperature-dependent electrical conductivity, Seebeck coefficient, and thermal conductivity are reported. Estimated values of lattice thermal conductivity (0.7 W m−1 K−1) are lower than some reports of functional melt-alloyed PbSnTe-based material, providing evidence that MA can engender the combination of properties resulting in highly functional thermoelectric material. Though doping level and Sn composition have not been optimized, this material exhibits a ZT value >0.5 at 550 K.  相似文献   

5.
Thermoelectric Sb x Te y films were potentiostatically electrodeposited in aqueous nitric acid electrolyte solutions containing different concentrations of TeO2. Stoichiometric Sb x Te y films were obtained by applying a voltage of −0.15 V versus saturated calomel electrode (SCE) using a solution consisting of 2.4 mM TeO2, 0.8 mM Sb2O3, 33 mM tartaric acid, and 1 M HNO3. The nearly stoichiometric Sb2Te3 films had a rhombohedral structure, R[`3]m R\bar{3}m , with a preferred orientation along the (015) direction. The films had hole concentration of 5.8 × 1018/cm3 and exhibited mobility of 54.8 cm2/Vs. A more negative potential resulted in higher Sb content in the deposited Sb x Te y films. Furthermore, it was observed that the hole concentration and mobility decreased with increasingly negative deposition potential, and eventually showed insulating properties, possibly due to increased defect formation. The absolute value of the Seebeck coefficient of the as-deposited Sb2Te3 thin film at room temperature was 118 μV/K.  相似文献   

6.
Zintl phases are currently receiving great attention for their thermoelectric potential typified by the discovery of a high ZT value in Yb14MnSb11-based compounds. Herein, we report on the crystallographic characterization via neutron and x-ray diffraction experiments, and on the thermoelectric properties measured in the 300 K to 1000 K temperature range, of Mo3Sb7 and its isostructural compounds Mo3−x Ru x Sb7. Even though Mo3Sb7 displays rather high ZT values given its metallic character, the partial substitution of Mo by Ru substantially improves its thermoelectric properties, resulting in a ZT value of ∼0.45 at 1000 K for x = 0.8.  相似文献   

7.
A series of Bi2(Se0.4Te0.6)3 compounds were synthesized by a rapid route of melt spinning (MS) combined with a subsequent spark plasma sintering (SPS) process. Measurements of the Seebeck coefficient, electrical conductivity, and thermal conductivity were performed over the temperature range from 300 K to 520 K. The measurement results showed that the cooling rate of melt spinning had a significant impact on the transport properties of electrons and phonons, effectively enhancing the thermoelectric properties of the compounds. The maximum ZT value reached 0.93 at 460 K for the sample prepared with the highest cooling rate, and infrared spectrum measurement results showed that the compound with lower tellurium content, Bi2(Se0.4Te0.6)3, possesses a larger optical forbidden gap (E g) compared with the traditional n-type zone-melted material with formula Bi2(Se0.07Te0.93)3. Our work provides a new approach to develop low-tellurium-bearing Bi2Te3-based compounds with good thermoelectric performance.  相似文献   

8.
This study reports the good thermal stability of a sputtered Cu(MoN x ) seed layer on a barrierless Si substrate. A Cu film with a small amount of MoN x was deposited by reactive co-sputtering of Cu and Mo in an Ar/N2 gas mixture. After annealing at 560°C for 1 h, no copper silicide formation was observed at the interface of Cu and Si. Leakage current and resistivity evaluations reveal the good thermal reliability of Cu with a dilute amount of MoN x at temperatures up to 560°C, suggesting its potential application in advanced barrierless metallization. The thermal performance of Cu(MoN x ) as a seed layer was evaluated when pure Cu is deposited on top. X-ray diffraction, focused ion beam microscopy, and transmission electron microscopy results confirm the presence of an ∼10-nm-thick reaction layer formed at the seed layer/Si interface after annealing at 630°C for 1 h. Although the exact composition and structure of this reaction layer could not be unambiguously identified due to trace amounts of Mo and N, this reaction layer protects Cu from a detrimental reaction with Si. The Cu(MoN x ) seed layer is thus considered to act as a diffusion buffer with stability up to 630°C for the barrierless Si scheme. An electrical resistivity of 2.5 μΩ cm was obtained for the Cu/Cu(MoN x ) scheme after annealing at 630°C.  相似文献   

9.
In this work, Te-doped and S-filled S x Co4Sb11.2Te0.8 (x = 0.1, 0.15, 0.2, 0.25, 0.3, 0.4) skutterudite compounds have been prepared using solid state reaction and spark plasma sintering. Thermoelectric measurements of the consolidated samples were examined in a temperature range of 300–850 K, and the influences of S-addition on the thermoelectric properties of S x Co4Sb11.2Te0.8 skutterudites are systematically investigated. The results indicate that the addition of sulfur and tellurium is effective in reducing lattice thermal conductivity due to the point-defect scattering caused by tellurium substitutions and the cluster vibration brought by S-filling. The solubility of tellurium in skutterudites is enhanced with sulfur addition via charge compensation. The thermal conductivity decreases with increasing sulfur content. The highest figure of merit, ZT = 1.5, was obtained at 850 K for S0.3Co4Sb11.2Te0.8 sample, because of the low lattice thermal conductivity.  相似文献   

10.
Filled skutterudites have long been singled out as one of the prime examples of phonon glass electron crystal materials. Recently the double-filling approach in these materials has been attracting increased attention. In this study, Yb0.2In y Co4Sb12 (y = 0.0 to 0.2) samples have been prepared by a simple melting method and their thermoelectric properties have been investigated. The power factor is increased dramatically when increasing the In content, while the lattice thermal conductivity is lowered considerably, leading to a large increase of the ZT value. A state-of-the-art ZT value of 1.0 is attained in Yb0.2In0.2Co4Sb12 at 750 K.  相似文献   

11.
Polycrystalline p-type Bi0.5Sb1.5Te3 and n-type Bi2Te2.7Se0.3 thermoelectric (TE) alloys containing a small amount (vol.% ≤5) of SiC nanoparticles were fabricated by mechanical alloying and spark plasma sintering. It was revealed that the effects of SiC addition on TE properties can be different between p-type and n-type Bi2Te3-based alloys. SiC addition slightly increased the power factor of the p-type materials by decreasing both the electrical resistivity (ρ) and Seebeck coefficient (α), but decreased the power factor of n-type materials by increasing both ρ and α. Regardless of the conductivity type, the thermal conductivity was reduced by dispersing SiC nanoparticles in the Bi2Te3-based alloy matrix. As a result, a small amount (0.1 vol.%) of SiC addition increased the maximum dimensionless figure of merit (ZT max) of the p-type Bi0.5Sb1.5Te3 alloys from 0.88 for the SiC-free sample to 0.97 at 323 K, though no improvement in TE performance was obtained in the case of n-type Bi2Te2.7Se0.3 alloys. Importantly, the SiC-dispersed alloys showed better mechanical properties, which can improve material machinability and device reliability.  相似文献   

12.
Single-phase polycrystalline La x Sr1−x TiO3 (x = 0, 0.04, 0.06, 0.08, and 0.12) ceramics were prepared by the conventional solid-state reaction method using high-activity hydroxides as the raw materials. The electrical conductivity of all the samples increased with increasing x value and decreased with measurement temperature, while the thermal conductivity decreased with increasing x value and measurement temperature. The La0.12Sr0.88TiO3 sample showed the lowest thermal conductivity of 2.45 W m−1 K−1 at 873 K and the largest ZT of 0.28 at 773 K. The present work revealed that hydroxides with high activity as raw materials are beneficial to improve the thermoelectric properties, especially to decrease the thermal conductivity.  相似文献   

13.
Three Ta-doped strontium titanates were prepared as potential candidates for n-type thermoelectric oxides. The purity of the polycrystalline samples of SrTi1−x Ta x O3 (x = 0.05 to 0.14) were characterized by means of powder x-ray diffraction and electron probe micro analysis (EPMA). We present the results of Seebeck coefficient, electrical conductivity, and thermal conductivity measurements performed at high temperatures.  相似文献   

14.
The electrical characteristics and chemical reactant sensitivity of layers of heterogeneous nanocomposites based on porous silicon and nonstoichiometric tin oxide por-Si/SnO x , fabricated by the magnetron sputtering of tin with subsequent oxidation, are studied. It is shown that, in the nanocomposite layers, a system of distributed heterojunctions (Si/SnO x nanocrystals) forms, which determine the electrical characteristics of such structures. The sensitivity of test sensor structures based on por-Si/SnO x nanocomposites to NO2 is determined. A mechanism for the effect of the adsorption of NO2 molecules on the current-voltage characteristics of the por-Si(p)/SnO x (n) heterojunctions is suggested.  相似文献   

15.
Mg2Sn compounds were prepared by the modified vertical Bridgman method, and were doped with Bi and Ag to obtain n- and p-type materials, respectively. Excess Mg was also added to some of the ingots to compensate for the loss of Mg during the preparation process. The Mg2Sn samples were characterized by x-ray diffraction (XRD) and scanning electron microscopy (SEM), and their power factors were calculated from the Seebeck coefficient and electrical conductivity, measured from 80 K to 700 K. The sample prepared with 4% excess Mg, which contains a small amount of Mg2Sn + Mg eutectic phase, had the highest power factor of 12 × 10−3 W m−1 K−2 at 115 K, while the sample doped with 2% Ag, in which a small amount of eutectics also exists, has a power factor of 4 × 10−3 W m−1 K−2 at 420 K.  相似文献   

16.
The effects of atomic hydrogen (H) and Br/methanol etching on Hg1−x Cd x Te films were investigated using x-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Exposure of an as-received Hg1−x Cd x Te sample to H + H2 resulted in H-induced TeO2 reduction. The oxide reduction was first order with respect to H + H2 exposure. Exposure to H + H2 after etching the Hg1−x Cd x Te film in a Br/methanol solution induced Hg and C depletion. Hg and C removal was also observed after completely reducing the TeO2 on the as-received sample. The removal process was hindered by the formation of a Cd-rich overlayer on both etched and unetched surfaces.  相似文献   

17.
Thermoelectric and galvanomagnetic properties of p-type solid solutions based on bismuth and antimony chalcogenides (Bi,Sb)2(Te,Se)3 have been studied to analyze the features of the figure of merit Z. The increase of Z and ZT for the p-Bi2−x Sb x Te3 composition at x = 1.6 in the temperature interval of 370 K to 550 K was shown to be defined by the increase of the density-of-states effective mass, the slope of the temperature dependence of the carrier mobility, and the reduction of the lattice thermal conductivity for optimal charge carrier concentration. High carrier mobility and low lattice thermal conductivity provide the increase of Z and ZT in the p-Bi2−x Sb x Te3−y Se y (x = 1.3, y = 0.06) solid solution in the interval from 300 K to 370 K. The growth of Z in these compositions is determined by the increase of the compression of the constant-energy ellipsoids along binary and bisector directions, and by the change of the tilt angle Θ between the principal axes of the ellipsoids and the crystallographic axes.  相似文献   

18.
The Mg x Zn1-x O thin films with a Mg content corresponding to x = 0–0.45 are grown by pulsed laser deposition on ablation of ceramic targets. The conditions for epitaxial growth of the films on the single-crystal Al2O3 (00.1) substrates are established. The record limit of solubility of Mg in hexagonal ZnO, x = 35 is attained. In this case, the lattice mismatch for the parameter a of the ZnO and Mg0.35Zn0.65O films does not exceed 1%, whereas the band gaps of the films differ by 0.78 eV. The surface roughness of the films corresponds to 0.8–1.5 nm in the range of x = 0–0.27.  相似文献   

19.
The thermoelectric (TE) performance of Bi0.5Sb1.5Te3 polycrystalline alloys has been improved by a simple hot-forging process. No obvious texture was observed in the x-ray diffraction (XRD) patterns of the hot-forged samples. Transport property measurements indicated that the hot-forged samples possessed extremely low thermal conductivities. A maximum ZT value of ∼1.1 at room temperature was obtained for the sample forged under 30 MPa pressure, being almost 50% more than that of the initial unforged alloy. High-resolution transmission electron microscopy (HRTEM) observations suggested that the high density of lattice defects of the hot-forged samples could be responsible for the extremely low thermal conductivities.  相似文献   

20.
Filled skutterudites are prospective intermediate temperature materials for␣thermoelectric power generation. CoSb3-based n-type filled skutterudites have good electrical transport properties with power factor values over 40 μW/cm K2 at elevated temperatures. Filling multiple fillers into the crystallographic voids of skutterudites would help scatter a broad range of lattice phonons, thus resulting in lower lattice thermal conductivity values. We report the thermoelectric properties of n-type multiple-filled skutterudites between 5 K and 800 K. The combination of different fillers inside the voids of the skutterudite structure shows enhanced phonon scattering, and consequently a strong suppression of the lattice thermal conductivity. Very good power factor values are achieved in multiple-filled skutterudite compared with single-element-filled materials. The dimensionless thermoelectric figure of merit for n-type filled skutterudites is improved through multiple-filling in a wide temperature range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号