首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Toughening mechanisms in epoxy-silica nanocomposites (ESNs)   总被引:1,自引:0,他引:1  
Y.L. Liang 《Polymer》2009,50(20):4895-565
Two types of nanosilica (NS) particles with different average particle sizes (20 nm and 80 nm in diameter, respectively) were used to fabricate epoxy-silica nanocomposites (ESNs) in this study. No significant differences in fracture behavior were observed between the epoxies filled with 20 nm NS particles and the epoxies filled with 80 nm NS particles. Interestingly, both types of NS particles were found to be more efficient in toughening epoxies than micron size glass spheres. As with micron size glass spheres, the fracture toughness of the ESNs were affected by the crosslink density of the epoxy matrix, i.e. a lower crosslinked matrix resulted in a tougher ESN. The increases in toughness in both types of ESNs were attributed to a zone shielding mechanism involving matrix plastic deformation. Moreover, the use of Irwin's formalized plastic zone model precisely described the relationship between the fracture toughness, yield strength and the corresponding plastic zone size of the various ESNs examined.  相似文献   

2.
Our limited success in toughening methylene dianiline (MDA)-cured Epon 828, using varying rubber types, led to a study of the role of the matrix viscoelasticity in the toughening process. Two rubber types, with different interfacial bonding capabilities, poly(n-butyl acrylate)/15 wt % acrylonitrile/2 wt % acrylic acid and poly(n-butylacrylate)/15 wt % acrylonitrile, were incorporated into systems containing varying amine concentrations to control crosslink density. Impact strengths of controls and rubber-modified compositions increased with excess amine concentrations up to 70%. The impact strengths for the poly(n-butyl acrylate)/15 wt % acrylonitrile/2 wt % acrylic acid rubber-modified compositions were greater than their equivalent controls, with the effect being greater at a lower crosslink density. This study confirmed that the matrix viscoelasticity is the controlling parameter in the toughening process. The degree of rubber–epoxy interfacial bonding is also an important parameter to consider, if the matrix viscoelasticity permits toughening. A modified stress response model was used to explain the toughening phenomenon.  相似文献   

3.
Poly(butadiene-co-styrene) [P(B-S)] core-poly(methyl methacrylate) (PMMA) shell particles were prepared using a two-step emulsion polymerization. These core-shell particles were used to toughen an epoxy polymer. The role of particle-epoxy interfaces were studied by systematically varying the shell compositions of the core-shell particles such as PMMA, P[MMA-acrylonitrile (AN)], P[MMA-glycidyl methacrylate (GMA)] and P[MMA-divinyl benzene(DVB)]. Therefore, the nature of the particle-epoxy interfaces is varied in terms of physical interactions and chemical bonding. The fracture toughness values of the toughened epoxies were measured using linear elastic fracture mechanics. Results indicate that the morphology of the dispersed particles in the epoxy matrix plays an important role in the toughening of epoxies. This degree of dispersion can be varied by incorporating AN and GMA comonomers in the PMMA shells or by crosslinking the shell. In summary, nanoscale interactions of the rubber-matrix interface do not directly influence fracture toughness, instead, it was found that the nanoscale interactions could be used to control the blend morphology which has a dramatic effect on toughness. © 1995 John Wiley & Sons, Inc.  相似文献   

4.
The role of rubber particle cavitation resistance on toughening of epoxy resins is still unresolved. In this research, the role of rubber particle cavitation resistance was exclusively studied. Two types of core‐shell rubber (CSR) particles with different cavitation resistances were utilized for modifying epoxy resin. Matrix crosslink density (XLD) was varied by using nonstoichiometric amounts of hardener. Fracture toughness values of neat and CSR‐modified epoxy samples decreased with lowering of XLD via deviation from stoichiometric point. It was resulted by higher modulus and lower elongation at break of the nonstoichiometric samples, and also antiplasticization of epoxy networks resulted from suppression of β‐transition relaxation motions. In all XLDs, the CSR particles with higher core Tg and modulus yielded higher fracture energy. Results showed that core properties such as Tg and modulus of CSR particles had a significant effect on toughening of the epoxy networks. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

5.
The mechanical properties, thermomechanical properties, and fracture mechanic properties of block-copolymer (BCP), core–shell rubber (CSR) particles, and their hybrids in bulk epoxy/anhydride system were investigated at 23 °C. The results show that fracture toughness was increased by more than 268% for 10 wt % BCP, 200% for 12 wt % of CSR particles, and 100% for hybrid systems containing 3 wt % of each, BCP and CSR. The volume content of nanoparticles influences the final morphology and thus influences the tensile properties and fracture toughness of the modified systems. The toughening mechanisms induced by the BCP and CSR particles were identified as (1) localized plastic shear-band yielding around the particles and (2) cavitation of the particles followed by plastic void growth in the epoxy polymer. These mechanisms were modeled using the Hsieh et al. approach and the values of GIc of the different modified systems were calculated. Excellent agreement was found between the predicted and the experimentally measured fracture energies. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48471.  相似文献   

6.
The fracture behavior of a bisphenol A diglycidylether (DGEBA) epoxy, Araldite F, modified using carboxyl‐terminated copolymer of butadiene and acrylonitrile (CTBN) rubber up to 30 wt%, is studied at various crosshead rates. Fracture toughness, KIC, measured using compact tension (CT) specimens, is significantly improved by adding rubber to the pure epoxy. Dynamic mechanical analysis (DMA) was applied to analyze dissolution behavior of the epoxy resin and rubber, and their effects on the fracture toughness and toughening mechanisms of the modified epoxies were investigated. Scanning electron microscopy (SEM) observation and DMA results show that epoxy resides in rubber‐rich domains and the structure of the rubber‐rich domains changes with variation of the rubber content. Existence of an optimum rubber content for toughening the epoxy resin is ascribed to coherent contributions from the epoxy‐residing dispersed rubber phase and the rubber‐dissolved epoxy continuous phase. No rubber cavitation in the fracture process is found, the absence of which is explained as a result of dissolution of the epoxy resin into the rubber phase domains, which has a negative effect on the improvement of fracture toughness of the materials. Plastic deformation banding at the front of precrack tip, formed as a result of stable crack propagation, is identified as the major toughening process.  相似文献   

7.
Rubber particle cavitation and concomitant shear deformation of the matrix is known to be a major source of toughening in rubber-modified epoxies. The role of the rubber-matrix interface in this toughening mechanism, however, is not well studied. It has been claimed by Chen and Jan [Polym. Eng. Sci., 31,577 (1991)] that introduction of a ductile interphase around the rubbery phase enhances plastic dilation of particles and thus contributes to fracture energy of modified blend. In spite of this promising development in rubber toughening, very few studies on the use of ductile interfaces to improve the fracture resistance of rubber-modified polymers have been initiated. The objective of this investigation is to examine the role of ductility of interface on the fracture toughness of rubber-modified epoxies. Both ductile and rigid interphases are incorporated around CTBN particles in a DGEBA epoxy matrix via end-capping of rubber with epoxy monomers different from that of the matrix. The results of this investigation suggest that introduction of a ductile interphase may indeed further improve the crack growth resistance of material under certain test conditions. In contrast, introduction of the rigid interphase, in the system studied, promoted interfacial debonding and plastic dilation but did not alter the mechanical performance of the rubber-modified blend. © 1995 John Wiley & Sons, Inc.  相似文献   

8.
Y.L. Liang 《Polymer》2010,51(21):4880-4890
Two different size nanosilica (NS) particles, nominally 20 nm and 80 nm in diameter, and carboxyl terminated butadiene acrylonitrile (CTBN) were blended into a lightly crosslinked, DGEBA/piperidine epoxy system to investigate the toughening mechanisms in hybrid epoxy-silica-rubber nanocomposites (HESRNs). Adding small amount of NS particles into CTBN toughened epoxies further improved the fracture toughness to a level that could not be achieved by increasing CTBN content alone. Interestingly, this toughening effect is diminished when NS particles clustered at high CTBN contents. In addition, the effect of NS particle size on toughening behavior was not considerable, except the case when NS clustering is observed. According to the SEM and TOM investigations, the plastic zone, which consists of shear banding and matrix dilation, is further enlarged in front of the crack tip in HESRNs. Irwin’s model is used to evaluate the process zone concept and the result indicates that zone shielding is credited for the toughening mechanism in these HESRNs.  相似文献   

9.
The present study focuses on the preparation of a novel hybrid epoxy nanocomposite with glycidyl polyhedral oligomeric silsesquioxane (POSS) as nanofiller, carboxyl terminated poly(acrylonitrile‐co‐butadiene) (CTBN) as modifying agent and diglycidyl ether of bisphenol A (DGEBA) as matrix polymer. The reaction between DGEBA, CTBN, and glycidyl POSS was carefully monitored and interpreted by using Fourier transform infrared (FTIR) and differential scanning calorimetry (DSC). An exclusive mechanism of the reaction between the modifier, nanofiller, and the matrix is proposed herein, which attempts to explains the chemistry behind the formation of an intricate network between POSS, CTBN, and DGEBA. The mechanical properties, such as tensile strength, and fracture toughness, were also carefully examined. The fracture toughness increases for epoxy/CTBN, epoxy/POSS, and epoxy/CTBN/POSS hybrid systems with respect to neat epoxy, but for hybrid composites toughening capability of soft rubber particles is lost by the presence of POSS. Field emission scanning electron micrographs (FESEM) of fractured surfaces were examined to understand the toughening mechanism. The viscoelastic properties of epoxy/CTBN, epoxy/POSS, and epoxy/CTBN/POSS hybrid systems were analyzed using dynamic mechanical thermal analysis (DMTA). The storage modulus shows a complex behavior for the epoxy/POSS composites due to the existence of lower and higher crosslink density sites. However, the storage modulus of the epoxy phase decreases with the addition of soft CTBN phase. The Tg corresponding to epoxy‐rich phase was evident from the dynamic mechanical spectrum. For hybrid systems, the Tg is intermediate between the epoxy/rubber and epoxy/POSS systems. Finally, TGA (thermo gravimetric analysis) studies were employed to evaluate the thermal stability of prepared blends and composites. POLYM. COMPOS., 37:2109–2120, 2016. © 2015 Society of Plastics Engineers  相似文献   

10.
The effect of short Aramid fibers on the fracture and toughening behavior of epoxy with high glass transition temperature has been studied. Fine dispersion of the fibers throughout the matrix is evidenced by optical microscopy. Compared with neat epoxy resin, the fracture toughness (KIC) of the composites steadily increases with increasing fiber loading, indicating that addition of Aramid fibers has an effective toughening effect to the intrinsically brittle epoxy matrix. Scanning electron microscopy (SEM) indicates that formation of numerous step structures for fiber‐filled epoxy systems is responsible for the significant toughness improvement. SEM and transmitted optical microscopy show that fiber pullout and fiber breakage are the main toughening mechanisms for the Aramid fiber/epoxy composites. POLYM. COMPOS. 26:333–342, 2005. © 2005 Society of Plastics Engineers.  相似文献   

11.
The fracture behavior of a hybrid-rubber-modified epoxy system was investigated. The modified epoxy included amine-terminated butadiene acrylonitrile (ATBN) rubber and recycled tire particles as fine and coarse modifiers, respectively. The results of the fracture toughness (KIC) measurement of the blends revealed synergistic toughening in the hybrid system when 7.5-phr small particles (ATBN) and 2.5-phr large particles (recycled tire) were incorporated. Transmission optical micrographs showed different toughening mechanisms for the blends; fine ATBN particles increased the toughness by increasing the size of the damage zone and respective plastic deformation in the vicinity of the crack tip. However, in the case of hybrid resin, coarse recycled rubber particles acted as large stress concentrators and resulted in the branching of the original crack tip. Mode mixity at the branch tips led to synergistic KIC in the hybrid system. It seemed that the ductility of the matrix played an effective role in the nature of the crack-tip damage zone in the hybrid epoxies. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

12.
Hydroxy‐terminated poly(arylene ether nitrile) oligomers with pendent tert‐butyl groups (PENTOH) were synthesized by the nucleophilic aromatic substitution reaction of 2,6‐dichlorobenzonitrile with tert‐butyl hydroquinone in N‐methyl‐2‐pyrrolidone medium with anhydrous potassium carbonate as a catalyst at 200°C in a nitrogen atmosphere. The PENTOH oligomers were blended with diglycidyl ether of bisphenol A epoxy resin and cured with 4,4′‐diaminodiphenyl sulfone. The curing reaction was monitored with infrared spectroscopy and differential scanning calorimetry. The morphology, fracture toughness, and thermomechanical properties of the blends were investigated. The scanning electron micrographs revealed a two‐phase morphology with a particulate structure of the PENTOH phase dispersed in the epoxy matrix, except for the epoxy resin modified with PENTOH with a number‐average molecular weight of approximately 4000. The storage modulus of the blends was higher than that of the neat epoxy resin. The crosslink density calculated from the storage modulus in the rubbery plateau region decreased with an increase in PENTOH in the blends. The fracture toughness increased more than twofold with the addition of PENTOH oligomers. The tensile strength of the blends increased marginally, whereas the flexural strength decreased marginally. The dispersed PENTOH initiated several toughening mechanisms, which improved the fracture toughness of the blends. The thermal stability of the epoxy resin was not affected by the addition of PENTOH to the epoxy resin. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

13.
Shiqiang Deng  Lin Ye  Jingshen Wu 《Polymer》2008,49(23):5119-5127
An experimental attempt was made to characterize the fracture behaviour of epoxies modified by halloysite nanotubes and to investigate toughening mechanisms with nanoparticles other than carbon nanotubes (CNTs) and montmorillonite particles (MMTs). Halloysite-epoxy nanocomposites were prepared by mixing epoxy resin with halloysite particles (5 wt% and 10 wt%, respectively). It was found that halloysite nanoparticles, mainly nanotubes, are effective additives in increasing the fracture toughness of epoxy resins without sacrificing other properties such as strength, modulus and glass transition temperature. Indeed, there were also noticeable enhancements in strength and modulus for halloysite-epoxy nanocomposites because of the reinforcing effect of the halloysite nanotubes due to their large aspect ratios. Fracture toughness of the halloysite particle modified epoxies was markedly increased with the greatest improvement up to 50% in KIC and 127% in GIC. Increases in fracture toughness are mainly due to mechanisms such as crack bridging, crack deflection and plastic deformation of the epoxy around the halloysite particle clusters. Halloysite particle clusters can interact with cracks at the crack front, resisting the advance of the crack and resulting in an increase in fracture toughness.  相似文献   

14.
Epoxies containing epoxy-terminated butadiene acrylonitrile rubber (ETBN) or amino-terminated butadiene acrylonitrile rubber (ATBN) were prepared and studied in terms of fatigue crack propagation (FCP) resistance and toughening mechanisms. Rubber incorporation improves both impact and FCP resistance, but results in slightly lower Young's modulus and Tg As Tg increases, the degree of toughening decreases. Rubber-induced shear yielding of the epoxy matrix is believed to be the dominant toughening mechanism. Decreasing fatigue resistance with increasing cyclic frequency is observed for both neat and rubber-toughened epoxies. This result may be explained by the inability of these materials to undergo possible beneficial effects of hysteretic heating. FCP resistance is linearly proportional to Mc1/2, where Mc is the apparent molecular weight between crosslinks determined on the rubber-toughened material. FCP resistance also increases with increasing static fracture toughness KIC. ATBN-toughened epoxies demonstrated better fatigue resistance than ETBN-toughened systems.  相似文献   

15.
An experimental investigation has been carried out to study the influence of thermoplastic addition on the mechanical properties of woven carbon fiber/epoxy matrix composites. As toughening agent bisphenol‐A polysulfone, PSu, has been added to the epoxy matrix. Flexural tests haved been performed to characterize the mechanical behavior of unmodified and PSu‐modified bulk tetra‐ and bifunctional epoxy matrices and also for the corresponding woven carbon fiber, CF, composite materials. Three‐point notched flexural tests been used to investigate the influence of polysulfone addition in the mode‐I fracture properties of the bulk epoxy matrices, relating them to their microstructural features investigated by atomic force microscopy (AFM). The double‐cantilever bea (DCB) and the end‐notched flexural (ENF) tests have been applied to characterize the interlaminar fracture toughness of the corresponding composites. For composites, the flexural properties were simmilar independent of the funcetionality of the epoxy matrix and of the thermoplastic content. Nevertheless, PSu addition to the epoxy matrix celarly enhanced the ode‐I and II interlaminar fracture toughness of the corresponding composites, the immprovement being higher for the composites manufactured with the bifunctional epoxy matrix at every thermoplastic content because of the lower crosslink density of the epoxy matrix.  相似文献   

16.
Herein, the fracture toughness of ternary epoxy systems containing nanosilica and hollow glass microspheres (HGMS) is investigated. The experimental measurements reveal synergistic fracture toughness in some hybrid compositions: The incorporation of 10 phr of HGMS and nanosilica alone modify the fracture toughness of epoxy by 39% and 91%, respectively. However, use of 10 phr hybrid modifier can enhance the fracture toughness of the resin up to 120%. Observations reveal different toughening mechanisms for the blends i.e., plastic deformation for silica nanoparticles and crack bifurcation for HGMS. Both of these toughening mechanisms additively contribute to the synergism in ternary epoxies.  相似文献   

17.
Carboxyl-terminated butadiene-acrylonitrile-rubber decreases modulus and yield stress of the studied epoxy but increases fracture toughness. The addition of glass bead compensates for the loss in modulus but has little effect on yield stress. However, it significantly contributes to the fracture toughness by providing additional mechanisms for toughening of both the unmodified and rubber-modified epoxy. For the toughened epoxies studied, fracture surfaces gave only limited information on fracture mechanisms since significant energy absorption also occurs in the material below the fracture surface. Suggestions for suitable material compositions for fiber composite matrices are given.  相似文献   

18.
Reactive block copolymers (BCPs) provide a unique means for toughening epoxy thermosets because covalent linkages provide opportunities for greater improvement in the fracture toughness (KIC). In this study, a tailored reactive tetrablock copolymer, poly[styrene‐alt‐(maleic anhydride)]‐block‐polystyrene‐block‐poly(n‐butyl acrylate)‐block‐polystyrene, was incorporated into a diglycidyl ether of bisphenol A based epoxy resin. The results demonstrate the advantage of reactive BCP in finely tuning and controlling the structure of epoxy blends, even with 95 wt % epoxy‐immiscible triblocks. The size of the dispersed phase was efficiently reduced to submicrometer level. The mechanical properties, such as KIC, of these cured blends were investigated. The addition of 10 wt % reactive BCP into the epoxy resins led to considerable improvements in the toughness, imparting nearly a 70% increase in KIC. The designed reactive tetrablock copolymer opened good prospects because of its potential novel applications in toughening modification of engineering polymer composites. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 132, 42826.  相似文献   

19.
This study examines for the first time how matrix crosslinking affects the composite physical and mechanical properties of a graphite fiber reinforced PMR polyimide composite during long-term isothermal aging. Unidirectional composite specimens of Celion 6000/PMR-P1 were isothermally exposed at 288°C in air for various time periods up to 5000 h. The matrix crosslink densities were estimated from the kinetic theory of rubber elasticity and shifts in the glass transition temperatures (Tgs). The Tg, coefficient of thermal expansion, density, weight loss, moisture absorption, and elevated temperature flexural and interlaminar shear properties were also determined. Several linear relationships were found between the matrix crosslink density and composite physical and mechanical properties. The Tg, initial weight loss and density, and elevated temperature interlaminar shear strength increase with an increase in crosslink density. Conversely, the initial moisture absorption and coefficient of thermal expansion decrease with increasing crosslink density. As expected, the elevated temperature flexural strength and modulus show no direct correlations with crosslink density. Further, after achieving the highest matrix crosslink density, several of the composite properties begin to decrease rapidly. These findings suggest that time-temperature dependent nature of attaining the maximum matrix crosslinking is closely linked to the onset of the composite property degradation. Though much more work is needed, a fundamental understanding of the relationships between matrix crosslinking and composite physical and mechanical property can provide a scientific basis for the prediction of the extent of composite service life not only for PMR polyimides but also for other thermosetting matrix resins, such as epoxies and bismaleimides.  相似文献   

20.
N-Phenylmaleimide (PMI)–N-(p-hydroxy)phenylmaleimide (HPMI)–styrene (St) terpolymers (HPMS), containing pendant p-hydroxyphenyl (HP) groups, were prepared and used to improve the toughness of triglycidyl aminocresol epoxy resin cured with p,p′-diaminodiphenyl sulfone. HPMS was effective as a modifier for the toughening of the epoxy resin. When using 15 wt % of HPMS (1.0 mol % HP unit, Mw 129,000), the fracture toughness (KIC) for the modified resin increased 190% with a medium loss of flexural strength. The toughening of epoxies could be attained because of the cocontinuous phase structure of the modified resins. The decrease in flexural strength was suppressed to some extent by introducing a functional group into the modifier. The toughening mechanism was discussed in terms of the morphological behavior of the modified epoxy resin system. © 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号