首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Several distinct Ras GTPase activating proteins (GAPs) from mammals, including Ras GAP of 120 kDa (GAP1) and NF1, stimulate the intrinsic GTPase activity of normal Ras, but not oncogenic Ras mutants (Trahey and McCormick, 1987). That is the reason why normal Ras remains predominantly in the inactive GDP-bound form (D-Ras), whereas oncogenic Ras remains constitutively in the active GTP-bound form (T-Ras). NF1 is a tumor suppressor of 2818 amino acids whose disruption or deletion causes brain tumors called neurofibromatosis type 1 by elevating the T-Ras level. T-Ras activates several distinct oncogenic effectors, including Ser/Thr kinase Raf, GAP1, P1-3 kinase, PKC-zeta and Ra1 GDS. Interestingly, the binding of T-Ras to either GAPs or these oncogenic effectors requires the same effector domain I (residues 32-40) of T-Ras molecule. In other words, these GAPs and effectors compete for binding to T-Ras. Using a series of N- and C-terminal deletion mutants of NF1, we identified a 78 amino acid fragment (NF78, residues 1441-1518) as the minimum GAP domain, and a 56 amino acid fragment (NF 56, residues 1441-1496) as the minimum Ras-binding domain. Furthermore, we identified the Raf fragment of 81 amino acids (Raf81, residues, 51-131) as the minimum Ras-binding domain with a high affinity. We found that (i) these NF1 fragments and Raf81 compete for binding to T-Ras, and that (ii) over-expression of these NF1 or Raf fragments strongly suppresses the malignant transformation caused by oncogenic Ras mutants. Thus, these agents offer a unique opportunity to control the proliferation of T-Ras-associated tumors that represent more than 30% of all human carcinomas including neurofibromatosis type 1.  相似文献   

2.
Ras-related GTP-binding proteins function as molecular switches which cycle between GTP-bound 'on'- and GDP-bound 'off'-states. GTP hydrolysis is the common timing mechanism that mediates the return from the 'on' to the 'off'-state. It is usually slow but can be accelerated by orders of magnitude upon interaction with GTPase-activating proteins (GAPs). In the case of Ras, a major regulator of cellular growth, point mutations are found in approximately 30% of human tumours which render the protein unable to hydrolyse GTP, even in the presence of Ras-GAPs. The first structure determination of a GTPase-activating protein reveals the catalytically active fragment of the Ras-specific p120GAP (ref. 2), GAP-334, as an elongated, exclusively helical protein which appears to represent a novel protein fold. The molecule consists of two domains, one of which contains all the residues conserved among different GAPs for Ras. From the location of conserved residues around a shallow groove in the central domain we can identify the site of interaction with Ras x GTP. This leads to a model for the interaction between Ras and GAP that satisfies numerous biochemical and genetic data on this important regulatory process.  相似文献   

3.
The three-dimensional structure of the complex between human H-Ras bound to guanosine diphosphate and the guanosine triphosphatase (GTPase)-activating domain of the human GTPase-activating protein p120GAP (GAP-334) in the presence of aluminum fluoride was solved at a resolution of 2.5 angstroms. The structure shows the partly hydrophilic and partly hydrophobic nature of the communication between the two molecules, which explains the sensitivity of the interaction toward both salts and lipids. An arginine side chain (arginine-789) of GAP-334 is supplied into the active site of Ras to neutralize developing charges in the transition state. The switch II region of Ras is stabilized by GAP-334, thus allowing glutamine-61 of Ras, mutation of which activates the oncogenic potential, to participate in catalysis. The structural arrangement in the active site is consistent with a mostly associative mechanism of phosphoryl transfer and provides an explanation for the activation of Ras by glycine-12 and glutamine-61 mutations. Glycine-12 in the transition state mimic is within van der Waals distance of both arginine-789 of GAP-334 and glutamine-61 of Ras, and even its mutation to alanine would disturb the arrangements of residues in the transition state.  相似文献   

4.
Unlike the alpha subunits of heterotrimeric guanosine triphosphate (GTP)-binding proteins, Ras-related GTP-binding proteins have hitherto been considered not to bind or become activated by tetrafluoroaluminate (AIF4-). However, the product of the proto-oncogene ras in its guanosine diphosphate (GDP)-bound form interacted with AIF4 - in the presence of stoichiometric amounts of either of the guanosine triphosphatase (GTPase)-activating proteins (GAPs) p120GAP and neurofibromin. Neither oncogenic Ras nor a GAP mutant without catalytic activity produced such a complex. Together with the finding that the Ras-binding domain of the protein kinase c-Raf, whose binding site on Ras overlaps that of the GAPs, did not induce formation of such a complex, this result suggests that GAP and neurofibromin stabilize the transition state of the GTPase reaction of Ras.  相似文献   

5.
We conducted a mutation analysis of the most conserved region of the neurofibromatosis type 1 (NF1) gene, the guanine triphosphatase (GTPase) activating protein (GAP)-related domain (NF1 GRD), to which the function of tumour suppressor is attributed. Sixty primary neuroectodermal tumours were analysed. The rationale for the study was based on the likelihood of finding structural alterations resulting in loss of function of this region in tumours of neuroepithelial tissues, where the activity of neurofibromin seems to be crucial in regulating the mechanisms of signal transduction and cell transformation mediated by p21 ras. Following analysis of the whole NF1 GRD sequence, no mutations were identified in the tumours analysed. We conclude that the loss of NF1 gene tumour suppressor function, that might lead or contribute to the development of malignancies in neuroectodermal tissues, is not due to structural abnormalities of the region of the gene which interacts with p21 ras.  相似文献   

6.
RAS mutations can be detected in a variable number of patients with myeloproliferative disorders such as myelodysplastic syndromes and acute myeloid leukemia, but are rare events in chronic myelogenous leukemia in chronic phase. However, there is good evidence supporting the involvement of RAS signalling pathway in CML and this could be due to alterations in RAS activity regulatory proteins. The neurofibromatosis (NF1) gene down-regulates the RAS signal transduction pathway through the inhibitory function of its GAP-related domain (GRD) on RAS protein. The loss or alteration of neurofibromin (the NF1 protein) may produce a disfunction similar to point mutations in the RAS gene resulting in the permanent stimulation of the RAS signal transduction pathway. Mutations involving the GRD region of the NF1 gene (GRD-NF1) have been described in a variety of tumors such as colon carcinoma and astrocytoma. Germline mutations and deletions in the NF1 gene, as seen in neurofibromatosis type 1, are also associated with certain myeloid disorders. In the present work, we sought to identify mutations in the codons 12/13 and 61 of RAS gene and in the Lys-1423 codon of GRD-NF1, which are well known hot spots in these genes, in a group of 36 adults and ten children with chronic myelogenous leukemia in chronic phase and blast crisis. Using the PCR-SSCP and the allele-specific restriction assay (ASRA) techniques, we were not able to observe any RAS or NF1 detectable mutation. These findings suggest that RAS and GRD-NF1 mutations are not involved either in chronic phase or in the progression to blast crisis in chronic myelogenous leukemia in adults and children.  相似文献   

7.
The mammalian rasGAPs constitute a group of widely expressed proteins involved in the negative regulation of ras-mediated signaling. In this study we have isolated a novel human gene, RASAL (Ras GTPase-activating-like) and its murine ortholog, MRASAL which are most similar to the GAP1 family of rasGAP proteins, based upon the presence and organization of specific conserved domains. Full-length human and murine mRNA sequences are predicted to encode 804 and 799 amino acid polypeptides, respectively. Sequence analysis of these two proteins revealed the presence of two N-terminal calcium-dependent phospholipid binding C2 domains, a conserved GAP related domain (GRD) and a C-terminal pleckstrin homology (PH) domain. Northern blot and mRNA in situ hybridization analyses indicate that RASAL, in contrast to other mammalian rasGAP proteins, has a limited expression pattern; RASAL is highly expressed in the follicular cells of the thyroid and the adrenal medulla and expressed at lower levels in brain, spinal cord and trachea. Human RASAL has been localized by radiation hybrid mapping to chromosome 12q23-24.  相似文献   

8.
Monoglucosylation of low molecular mass GTPases is an important post-translational modification by which microbes interfere with eukaryotic cell signaling. Ha-Ras is monoglucosylated at effector domain amino acid threonine 35 by Clostridium sordellii lethal toxin, resulting in a blockade of the downstream mitogen-activated protein kinase cascade. To understand the molecular consequences of this modification, effects of glucosylation on each step of the GTPase cycle of Ras were analyzed. Whereas nucleotide binding was not significantly altered, intrinsic GTPase activity was markedly decreased, and GTPase stimulation by the GTPase-activating protein p120(GAP) and neurofibromin NF-1 was completely blocked, caused by failure to bind to glucosylated Ras. Guanine nucleotide exchange factor (Cdc25)-catalyzed GTP loading was decreased, but not completely inhibited. A dominant-negative property of modified Ras to sequester exchange factor was not detectable. However, the crucial step in downstream signaling, Ras-effector coupling, was completely blocked. The Kd for the interaction between Ras.GTP and the Ras-binding domain of Raf was 15 nM, whereas glucosylation increased the Kd to >1 mM. Because the affinity of Ras.GDP for Raf (Kd = 22 microM) is too low to allow functional interaction, a glucose moiety at threonine 35 of Ras seems to block completely the interaction with Raf. The net effect of lethal toxin-catalyzed glucosylation of Ras is the complete blockade of Ras downstream signaling.  相似文献   

9.
Guanosine triphosphatase activating protein (GAP) is an essential component of Ras signaling pathways. GAP functions in different cell types as a deactivator and a transmitter of cellular Ras signals. A domain (amino acids 275 to 351) encompassing the Src homology region 3 (SH3) of GAP was found to be essential for GAP signaling. A monoclonal antibody was used to block germinal vesicle breakdown (GVBD) induced by the oncogenic protein Ha-ras Lys12 in Xenopus oocytes. The monoclonal antibody, which was found to recognize the peptide containing amino acids 275 to 351 within the amino-terminal domain of GAP, did not modify the stimulation of the Ha-Ras-GTPase by GAP. Injection of peptides corresponding to amino acids 275 to 351 and 317 to 326 blocked GVBD induced by insulin or by Ha-Ras Lys12 but not that induced by progesterone. These findings confirm that GAP is an effector for Ras in Xenopus oocytes and that the SH3 domain is essential for signal transduction.  相似文献   

10.
p190 is a Tyr-phosphorylatable G protein of M(r) 190,000 that binds NH2-terminal SH2 domains of GAP1, a Ras GAP of M(r) 120,000. p190 contains at least two functional domains: a GTPase domain at the NH2 terminus and a GAP domain at the COOH terminus that can attenuate signal-transducing activity of three distinct G proteins (Rac, Rho, and CDC42). Here, we demonstrate that overexpression of either an antisense p190 RNA or a dominant negative mutant (Asn36) of p190 GTPase domain (residues 1-251) but not the wild-type p190 GTPase domain is able to transform normal NIH/3T3 fibroblasts. Furthermore, overexpression of either the wild-type p190 GTPase domain or the COOH-terminal GAP domain can suppress v-Ha-Ras-induced malignant transformation. These results indicate that p190 contains at least two distinct anti-Ras tumor suppressor domains, the GTPase and GAP domains, and suggest that one of the mechanisms underlying the suppression of Ras-transformation by p190 is the attenuation by p190 GAP domain of Rac/Rho/CDC42 signalings, which are essential for Ras-transformation. In fact, the p190 GAP domain alone suppresses the expression of the c-Fos gene, which is mediated by Rac/Rho/CDC42 and is required for oncogenicity of Ras.  相似文献   

11.
Small GTPases interact with a variety of proteins that affect nucleotide binding and cleavage. GTPase activating proteins (GAPs) are one class of these proteins that act by accelerating the intrinsic GTPase rate resulting in the formation of the biologically inactive GDP-bound form of the GTPase. For the Rho subfamily of GTPases, there is a growing number of proteins with rhoGAP activity that are identifiable by a homologous region of about 150 amino acids. We have exploited this homology using the polymerase chain reaction to clone the first rhoGAP homolog, called DdRacGAP, from the slime mold Dictyostelium discoideum. The GAP domain of DdRacGAP (amino acids 1-212), when expressed and purified from Escherichia coli, is active on both Dictyostelium and human Rho family GTPases but not human Ras. The full-length protein is 1356 amino acids in length and has several interesting homologies in addition to the GAP domain, including an SH3 domain, a dbl homology domain, and a pleckstrin homology domain.  相似文献   

12.
The enzymatic properties of Gap1(m) were characterized using three Ras and R-Ras proteins as substrates and were compared with those of p120GAP. Gap1(m) stimulated the GTPase of Ras better than that of R-Ras, in contrast to p120GAP which promoted the GTPase of R-Ras better than that of Ras. The EC50 values of Gap1(m) for Ha-Ras and R-Ras were 0.48 +/- 0.02 and 1.13 +/- 0.12 nM, respectively, whereas the EC50 values of p120GAP for Ha-Ras and R-Ras were 23.1 +/- 1.9 and 3.86 +/- 0.38 nM, respectively. The affinities of Gap1(m) and p120GAP to the substrates determined by competitive inhibition by using Ha-Ras.GTPgammaS (guanosine 5'-O-(3-thiotriphosphate)) or R-Ras.GTPgammaS as a competitor agreed well with the substrate specificities of these GTPase-activating proteins. The Km values of Gap1(m) for Ha-Ras and R-Ras were 1.53 +/- 0.27 and 3.38 +/- 0.53 microM, respectively, which were lower than that of p120GAP for Ha-Ras (145 +/- 11 microM) by almost 2 orders of magnitude. The high affinity of Gap1(m) to the substrates and its membrane localization suggest that Gap1(m) may act as a regulator of the basal activity of Ha-Ras and R-Ras.  相似文献   

13.
Ras is a master GTPase switch controlling multiple signal transduction cascades in the regulation of cell proliferation and differentiation. Rab5 is a local GTPase switch that is localized on early endosomes and controls early endosome fusion. This study demonstrates that the catalytic domain of p120 GTPase-activating protein (GAP), a well known Ras GAP, is able to interact physically with Rab5 and stimulate its GTPase activity. This GAP activity toward Rab5, however, cannot be extended to other Rab GTPases such as Rab3, Rab4, and Rab6, indicating that it is not a generic GAP for the Rab family of GTPases that regulate intracellular membrane fusion during endocytosis and exocytosis. The findings indicate a level of structural similarity between Ras and Rab5 unexpected from their primary sequences. They also suggest a possible signal transduction regulation of the Rab5-dependent endosome fusion via the Ras GAP.  相似文献   

14.
Proteins that associate with the GTP-bound forms of the Ras superfamily of proteins are potential effector targets for these molecular switches. A 195 kDa protein was purified from cell lysates by affinity chromatography on immobilized cdc42Hs-GTP and a corresponding cDNA was isolated. Sequence analysis revealed localized identities to calponin, the WW domain, unconventional myosins and to the rasGAP-related domain (GRD) contained in IRA, NF-1, SAR1 and rasGAP. p195 was found to be identical to IQGAP1, a protein previously reported to bind ras. Purified recombinant p195/IQGAP1 bound to and inhibited the GTPase activity of cdc42Hs and rac whereas no interaction with ras was detected. The C-terminal half of IQGAP1 containing the GRD bound to cdc42 and rac in a GRD-dependent fashion, but a smaller fragment containing only the GRD did not. Cdc42 was also co-immunoprecipitated from cell lysates with antibody specific to p195/IQGAP1. Calmodulin also co-immunoprecipitated with p195/IQGAP1 and was found to associate with fragments containing the IQ domain. Expression of a cDNA fragment encoding the GRD inhibited the CDC24/CDC42 pathway in yeast, but no effect on ras was observed. In mammalian cells, both endogenous and ectopically expressed p195/IQGAP1 were localized to lamellipodia and ruffling cell membranes, where co-localization with actin was apparent. These results suggest that IQGAP1 is an effector target for cdc42Hs and may mediate the effects of this GTPase on cell morphology.  相似文献   

15.
The two Ras-related GTPases called Rap1 and Rsr1, which share 50% sequence identity with Ras GTPases are known to be activated by two distinct mammalian GAPs, i.e. cytosolic GAP3c of 55 kDa and membrane-bound GAP3m of 85 kDa. Recently we have cloned a gene encoding a 68 kDa (p68) protein product, which is associated with chromosomes during interphase. The N-terminal 190 amino acids share 43% sequence identity with the second half of the GTPase activating domain (residues 210-397) of GAP3m. The N-terminal fragment of 209 amino acids of Spa-1 (called Span-N) was overproduced in E. coli as a glutathione S-transferase (GST) fusion protein and affinity purified. Rap1 and Rsr1 GTPase stimulatory activity of Spa-1 was tested and compared with GAP3m. Spa-1 preferentially stimulates Rsr1 GTPase rather than Rap1 GTPase, while GAP3m has a preference for Rap1 GTPase. This suggests that although Spa-1 and GAP3m stimulate GTPase of Rap1 family members, they differ in affinity for them. By mutational analysis it was also found that amino acid residues 10-183 are enough for Rap GAP activity of Spa-1.  相似文献   

16.
Type 1 Neurofibromatosis (NF1) is characterized by the formation of neurofibromas, benign tumors composed mainly of Schwann cells, which can turn malignant to form neurofibrosarcomas. Neurofibromin, the protein product of the Nf1 gene, is believed to act as a tumor suppressor, accelerating the conversion of the oncogene Ras to its inactive form. The absence of neurofibromin could therefore lead to higher Ras activity in Schwann cells, resulting in uncontrolled growth through a cascade of events not yet elucidated. We describe the abnormal expression of high levels of the Kit tyrosine kinase receptor in both NF1-derived Schwann cell lines and tissue, as compared to primary Schwann cells or schwannoma-derived cells. High levels of Kit expression in the neurofibrosarcoma-derived Schwann cells correlate with a decrease in neurofibromin expression. Using inhibitors of tyrosine kinase receptors, we found that proliferation of the neurofibrosarcoma-derived cells is dependent upon activation of a subclass of tyrosine-kinase receptors. The proliferation of these cells is not dependent upon an autocrine loop involving typical Schwann cell mitogens. Finally, the proliferation of the neurofibrosarcoma-derived Schwann cells can be increased by stimulation with Kit ligand. These data implicate Kit as one of the components leading to the Schwann cell hyperplasia observed in NF1.  相似文献   

17.
Tyrosinase-related protein 2 (TRP-2)/DOPAchrome tautomerase is an enzyme involved in melanin biosynthesis and plays an important role in cytoprotection by preventing the production of a toxic melanin precursor, 5,6-dihydroxyindole. Neurofibromin is the protein product of a gene linked to neurofibromatosis type 1 (NF1), which is characterized by multiple neurofibromas and abnormalities in skin pigmentation. To explore the pathogenesis of NF1, we studied the role of neurofibromin in the regulation of TRP-2 gene expression. By means of transient cotransfection assays, we show that the expression of a reporter gene under the control of the TRP-2 gene promoter was increased by a neurofibromin-dependent signal through the 71-bp region (positions -415 to -345). A Lys-to-Glu substitution at position 1425 in neurofibromin abrogated this activating function. A dominant negative Ki-ras inhibitor mimics neurofibromin's function, and additively increases TRP-2 promoter activity when coexpressed with neurofibromin. Therefore, we suggest that neurofibromin is involved in the regulation of TRP-2 gene expression. Moreover, we found a single case of a glioblastoma multiforme that expresses TRP-2 mRNA but not tyrosinase mRNA, suggesting that TRP-2 may function in human neural tissues under certain conditions.  相似文献   

18.
A fragment consisting of residues 584-1071 of the mouse Son-of-sevenless 1 (mSos1) protein was found to be sufficient for stimulation of the guanine nucleotide exchange of Ras in vitro, which defines the CDC25 homology (CDC25H) domain of mSos1. Furthermore, we found that the CDC25H-domain fragment activated the extracellular signal-regulated protein kinases (ERKs), and was mainly membrane localized, when expressed in unstimulated human embryonic kidney 293 cells. Then, we examined the roles of other mSos1 domains in autoinhibition of the CDC25H-domain functions in unstimulated cellular environments. First, longer fragments that have the CDC25H domain and the following proline-rich Grb2-binding domain exhibited negligible membrane localization, and accordingly much lower ERK-activation activities, under serum-starved conditions. On the other hand, the preceding Pleckstrin-homology (PH) domain affects neither the ERK-activation activity nor the membrane-localization activity of the CDC25H domain. By contrast, the cells expressing a fragment containing the Dbl homology (DH) domain in addition to the PH and CDC25H domains exhibited remarkably low ERK activities under serum-starved conditions. This autoinhibitory effect of the DH domain on the CDC25H-domain function was shown to be relieved when cells were stimulated with epidermal growth factor. The DH-domain extension affected neither the in vitro guanine nucleotide exchange activity nor the membrane-localization activity of the CDC25H domain. Therefore, one of the roles of the DH domain is to exert an autoinhibition over the CDC25H-domain function on the cell membrane, in the absence, but not in the presence, of extracellular stimuli.  相似文献   

19.
Activation of c-Raf-1 (referred to as Raf) by Ras is a pivotal step in mitogenic signaling. Raf activation is initiated by binding of Ras to the regulatory N terminus of Raf. While Ras binding to residues 51 to 131 is well understood, the role of the RafC1 cysteine-rich domain comprising residues 139 to 184 has remained elusive. To resolve the function of the RafC1 domain, we have performed an exhaustive surface scanning mutagenesis. In our study, we defined a high-resolution map of multiple distinct functional epitopes within RafC1 that are required for both negative control of the kinase and the positive function of the protein. Activating mutations in three different epitopes enhanced Ras-dependent Raf activation, while only some of these mutations markedly increased Raf basal activity. One contiguous inhibitory epitope consisting of S177, T182, and M183 clearly contributed to Ras-Raf binding energy and represents the putative Ras binding site of the RafC1 domain. The effects of all RafC1 mutations on Ras binding and Raf activation were independent of Ras lipid modification. The inhibitory mutation L160A is localized to a position analogous to the phorbol ester binding site in the protein kinase C C1 domain, suggesting a function in cofactor binding. Complete inhibition of Ras-dependent Raf activation was achieved by combining mutations K144A and L160A, which clearly demonstrates an absolute requirement for correct RafC1 function in Ras-dependent Raf activation.  相似文献   

20.
Binding of AP180 to clathrin triskelia induces their assembly into 60-70 nm coats. The largest rat brain cDNA clone isolated predicts a molecular weight of 91,430 for AP180. Two cDNA clones have an additional small 57 bp insert. The deduced molecular weight agrees with gel filtration results provided the more chaotropic denaturant 6 M guanidinium thiocyanate is substituted for the weaker guanidinium chloride. The sequence and the proteolytic cleavage pattern suggest a three domain structure. The N-terminal 300 residues (pI 8.7) harbour a clathrin binding site. An acidic middle domain (pI 3.6, 450 residues), interrupted by an uncharged alanine rich segment of 59 residues, appears to be responsible for the anomalous physical properties of AP180. The C-terminal domain (166 residues) has a pI of 10.4. AP180 mRNA is restricted to neuronal sources. AP180 shows no significant homology to known clathrin binding proteins, but is nearly identical to a mouse phosphoprotein (F1-20). This protein, localized to synaptic termini, has so far been of unknown function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号