首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The free vibration analysis of asymmetrical three-dimensional (3D) uniform shear beam-columns with generalized boundary conditions (semirigid flexural and torsional restraints, lateral bracings, and lumped masses at both ends) subjected to an eccentric end axial load in addition to a linearly distributed eccentric axial load along its span is presented in a classic manner. The five coupled governing equations of dynamic equilibrium (i.e., two shear equations, two bending moment equations, and the pure torsion moment equation) are sufficient to determine the natural frequencies and modal shapes. The proposed model which is an extension of a 2D model presented previously by the writer includes the simultaneous 3D coupling effects among the lateral deflections, deformations of the cross section along the member (shear, torsional and rotational), the translational, rotational and torsional inertias of all masses considered, an eccentric end axial load in addition to a linearly distributed axial load along its span, and the end restraints. Deformations caused by shear forces and pure torsion are considered. The effects of axial deformations, warping torsion and torsional stability are not included. The proposed model shows that the dynamic behavior of 3D shear beam-columns is highly sensitive to the coupling effects just mentioned, particularly in members with both ends free to rotate. Analytical results indicate that except for doubly symmetric members with concentric axial loads and with perfectly clamped ends, the natural frequencies and modal shapes of 3D shear beam-columns are determined from the eigenvalues of a full 8×8 matrix, rather than from the uncoupled equations of transverse (or shear-wave equations) and torsional moment equilibrium. Two comprehensive examples are presented that show the effectiveness of the proposed method.  相似文献   

2.
The large-deflection elastic analysis of slender beam-columns of symmetrical cross sections with semirigid connections under end loads (forces and moments) including the effects of out-of-plumbness is developed in a classical manner. The classical theory of the “Elastica” and the corresponding elliptical functions are utilized in the proposed method which can be used in the large-deflection stability analysis of slender beam-columns with rigid, semirigid, and simple connections under any combination of end loads (conservative and nonconservative). The proposed method consisting of a closed-form solution of the Elastica can also be utilized in the large deflection analysis of beam-columns whose connections suffer from flexural degradation or, on the contrary, flexural stiffening. The main limitation of the Elastica is that only flexural strains are considered (the effects of axial and shear strains are neglected). Therefore results from the proposed method are theoretically exact from small to very large curvatures and transverse and longitudinal displacements for plane beam-columns under bending actions. The large-deflection analysis of a beam-column with flexible connections at both ends becomes a complex problem requiring the simultaneous solution of at least two highly nonlinear equations with elliptical integrals. The solution of this problem becomes even more complex when the end connections are nonlinear or the direction of the applied end load changes (like “follower” loads). The validity and effectiveness of the proposed method and equations are verified against available solutions of very large deflection elastic analysis of beam-columns. Four comprehensive examples are included for verification and easy reference.  相似文献   

3.
The flexural and shear rigidity of pultruded composite sheet pile panels consisting of E-glass fiber-reinforced polyester are studied in this paper. The analysis consists of an experimental investigation and an analytical modeling to determine the resistance of the sheet pile panels to the deflections for design of composite sheet pile walls. Timoshenko’s beam theory was used to experimentally determine the flexural rigidity (EI) and shear rigidity (kAG) of the panel. Three- and four-point bending tests were performed on six different span lengths and the results were self-compared from the two independent tests. Analytical expressions for the flexural and shear rigidities were derived to allow the prediction based on the layered structure of pultruded shapes. The values computed from the analytical expressions were examined with the experimental results.  相似文献   

4.
The increasingly widespread use of fiber-reinforced polymers as an alternative to conventional materials makes it necessary to formulate theoretical models which adequately evaluate the influence of the anisotropy of such composites on the structural behavior. While the cross section shapes adopted for compressed members are generally the same as in steel structures, the anisotropy which characterizes these polymers may reduce the critical loading threshold due to local buckling phenomena. A procedure to study the buckling of glass fiber reinforced polymer pultruded members by means of an homogenization approach is proposed here. A two-stage buckling model permits the determination of both global and local critical loads as explicit functions of the member geometry and its material behavior. These functions may be used for optimization of the shape of the above-mentioned members. Besides the model shows its reliability as it fits the results of experimental testson members with different slenderness ratios.  相似文献   

5.
Concrete filled grid bridge decks exhibit orthogonal elastic properties and significant two-way bending action enabling orthotropic plate theory to determine structural response for these elements. Current American Association of State Highway and Transportation Officials load and resistance factor design (LRFD) specifications employ an orthotropic plate model to predict live load moment in concrete filled grid bridge decks but provide no guidance for computing displacement, a potentially important serviceability consideration. This paper presents equations to approximate the maximum deflection in concrete filled grid bridge decks based on orthotropic plate theory, multiple patch loads, LRFD design truck and tandem load cases, the influence of multiple spans, and the two most common deck orientations.  相似文献   

6.
This paper presents the results of an experimental work involving pultruded beams. The tests developed attempt to observe the interaction between local and global buckling in open-section beams. A modified three-point bending test with both ends clamped has been used in order to reduce the slenderness of the structural elements. By means of a finite-element model the critical bending moment has been calculated. Special care has been taken to obtain an accurate correspondence between the real test and the finite-element model. The comparison made between test results and critical bending moments showed that the above-mentioned interaction clearly reduces the lateral buckling load in the low slenderness range. Based on the experimental data, Dutheil’s formulation has been adjusted leading to a new design equation. The proposed equation showed a good correlation in the low slenderness range, but did not match well with experimental data from literature developed in the high slenderness range. For high slenderness values, using the critical bending moment seems to be the best design method. Therefore, more experimental work has to be done on pultruded beams in order to establish a suitable formulation to describe the transition between the low and high slenderness ranges’ behaviors.  相似文献   

7.
In a recent research and development project a novel prototype pultruded composite structure was designed, fabricated, and tested. The bargelike, box-girder type structure measured approximately 24-ft long by 15-ft wide by 5-ft high (7.3 × 4.6 × 1.5 m). The structure was constructed from commercially available off-the-shelf pultruded structural profiles and panel sections. Tubular steel structural members and steel hardware were used to connect and join the different sections and subassemblies. The structure consisted of three 24-ft-long by 5-ft-wide by 5-ft-high (7.3 × 1.5 × 1.5 m) rectangular box-girder modular units and six 4-ft (1.2-m) wide modular deck panels. A design requirement was that the structure be capable of being transported by conventional, nonpermit trucking and be assembled at a remote site for subsequent testing. The structure was fabricated at a ship building and repair shop in Norfolk, Va., whose primary expertise was with conventional steel ship-structure fabrication methods and which had no prior experience with fabricating a large pultruded structural system. To fabricate and assemble the structure, a set of construction documents was produced. These included a set of written construction and assembly specifications, a set of detailed construction drawings, a detailed parts list, and a schedule. This case study details the construction process and provides a step-by-step explanation of how the engineering design team developed the construction documents for a relatively complex pultruded composite structure. Details of the design, analysis, and testing of the system are provided elsewhere.  相似文献   

8.
The stability and postbuckling analysis of an axially restrained prismatic beam-column with single symmetrical cross section and an initial imperfection (camber) is presented. The proposed model is that by Timoshenko but including the effects of small camber of any form and any transverse loading. This model can be used to (1) determine the prebuckling elastic response and initial buckling load; (2) explain the postbuckling elastic behavior including the phenomena of snap-through, snap-back, and reversals of deflections; and (3) determine the effects of high modes of buckling on the stability behavior of beam-columns with small camber. In addition, closed-form equations corresponding to the transverse and axial deflections caused by any transverse loads on a partially restrained beam-column are developed as well as the bending stress along its span. It is shown that the prebuckling, stability, and postbuckling behavior of a beam-column depends on (1) the cross section and material properties (area, inertia, and elastic modulus); (2) the magnitude of the end restraints; and (3) the type and lack of symmetry about the beam-column midspan of the applied transverse loads and initial camber or imperfection. For transverse loads that are not symmetrical with respect to the beam-column midspan, the pre- and postbuckling criterion given by Timoshenko might yield significant errors in both the critical load and deflections. Three examples are presented that show the effectiveness and validity of the proposed equations and the limitations of Timoshenko's criteria.  相似文献   

9.
Traditional bridge evaluation techniques are based on design-based deterministic equations that use limited site-specific data. They do not necessarily conform to a quantifiable standard of safety and are often quite conservative. The newly emerging load and resistance factor rating (LRFR) method addresses some of these shortcomings and allows bridge rating in a manner consistent with load and resistance factor design (LRFD) but is not based on site-specific information. This paper presents a probability-based methodology for load-rating bridges by using site-specific in-service structural response data in an LRFR format. The use of a site-specific structural response allows the elimination of a substantial portion of modeling uncertainty in live load characterization (involving dynamic impact and girder distribution), which leads to more accurate bridge ratings. Rating at two different limit states, yield and plastic collapse, is proposed for specified service lives and target reliabilities. We consider a conditional Poisson occurrence of identically distributed and statistically independent (i.i.d.) loads, uncertainties in field measurement, modeling uncertainties, and Bayesian updating of the empirical distribution function to obtain an extreme-value distribution of the time-dependent maximum live load. An illustrative example uses in-service peak-strain data from ambient traffic collected on a high-volume bridge. Serial independence of the collected peak strains and of the counting process, as well as the asymptotic behavior of the extreme peak-strain values, are investigated. A set of in-service load and resistance factor rating (ISLRFR) equations optimized for a suite of bridges is developed. Results from the proposed methodology are compared with ratings derived from more traditional methods.  相似文献   

10.
Conventional analysis methods for beams do not distinguish between transverse loads that are applied at the beam centroidal axis and those acting either above or below the centroidal axis. In contrast, this paper formulates a sandwich beam finite element solution which models the effect of load height relative to the centroidal axis. Towards this goal, the governing equilibrium equations and associated boundary conditions are derived based on a Timoshenko beam formulation for the core material. Special shape functions satisfying the homogeneous form of the equilibrium equations are derived and subsequently used to formulate exact stiffness matrices. By omitting the stiffness terms related to the faces, the formulation for a homogeneous Timoshenko beam can be recovered. Also, the Euler–Bernouilli counterpart of the formulation is recovered as a limiting case of the current Timoshenko beam formulation. Effects of load height relative to the centroid are observed to have similarities with those induced by axial forces in beam-columns. For a simply supported beam, downward acting loads located below the centroidal axis are found to induce a stiffening effect while those acting above the centroidal axis are found to induce a softening effect, resulting in higher transverse displacements.  相似文献   

11.
Traditionally, wind analysis procedures based on the “gust loading factor” approach and experimental techniques involving the high frequency base balance and the “stick-type” aeroelastic model test have assumed ideal structural mode shapes, i.e., linear lateral modes and uniform torsional modes. The influence of nonideal mode shapes manifests itself through modifications in the generalized wind load, the structural displacement, the equivalent static wind load (ESWL), and the attendant influence function. This has led to the introduction of several correction procedures, each focusing on an individual feature of the overall response analysis framework. This paper presents a systematic development of correction procedures in terms of correction factors (CFs) to account for nonideal mode shapes in the formulation of generalized load, analysis of structural response, and the derivation of the ESWL. A parameter study is conducted to examine the significance of CFs in estimating various load effects. It is observed that the influence of a nonideal mode shape is actually negligible for the displacement response and the base bending moment, but not so for other load effects, e.g., the base shear and the generalized wind load. Although the existing procedures are effective in correcting the intended response component, they should not be used indiscriminately for other load effects. This paper also presents a correction procedure for the influence of mode shapes on the ESWLs, a loading format that is very attractive for implementation in codes and standards and design practice as well as for the correct interpretation of wind tunnel measurements.  相似文献   

12.
In the summer of 2005, after eight years of use as a temporary bridge during the winter, the Pontresina Bridge for pedestrians was transported to the Swiss Federal Institute of Technology Lausanne for a detailed assessment of the structural safety, serviceability, and long-term durability of the bridge. The assessment included a visual inspection, quasistatic testing identical to that performed in 1997, and detailed investigations of material degradation. The visual inspection showed a variety of different local defects and damage such as local crushing caused by impact, local cracks due to inappropriate storage and lifting of the structure, fiber blooming, degradation of cut surfaces, and damage due to vandalism. Comparisons between load tests performed in 1997 and 2005 showed, however, that the structural safety and serviceability of the bridge have not been affected by these local damages. The stiffness of the pultruded shapes remained unchanged, whereas a slight decrease in strength between 13 and 18% was measured, which, however, is not critical when taking into consideration the high effective safety factors. In view of a further service period of 5 years until the next inspection, the visible damages were repaired. This experience showed that the durability is primarily affected by inappropriate constructive detailing and that pultruded glass fiber-reinforced polymer shapes, if correctly manufactured and processed, can offer good long-term performance and durability.  相似文献   

13.
Due to the orthogonal elastic properties and significant two-way bending action, orthotropic plate theory may best be used to describe the behavior of concrete filled grid bridge decks. The current AASHTO LRFD specification employs an orthotropic plate model with a single patch load to predict live load moment in concrete filled grid bridge decks, which may not be conservative. This paper presents alternative equations to predict maximum moments, based on classical orthotropic plate theory, which include multiple patch loads, both the LRFD design truck and tandem load cases, and the two most common deck orientations. The predicted moments are verified through finite-element analyses.  相似文献   

14.
Nondimensional parameters and equations governing the buckling behavior of rectangular symmetrically laminated plates are presented that can be used to represent the buckling resistance, for plates made of all known structural materials, in a very general, insightful, and encompassing manner. In addition, these parameters can be used to assess the degree of plate orthotropy, to assess the importance of anisotropy that couples bending and twisting deformations, and to characterize quasi-isotropic laminates quantitatively. Bounds for these nondimensional parameters are also presented that are based on thermodynamics and practical laminate construction considerations. These bounds provide insight into potential gains in buckling resistance through laminate tailoring and composite-material development. As an illustration of this point, upper bounds on the buckling resistance of long rectangular orthotropic plates with simply supported or clamped edges and subjected to uniform axial compression, uniform shear, or pure in-plane bending loads are presented. The results indicate that the maximum gain in buckling resistance for tailored orthotropic laminates, with respect to the corresponding isotropic plate, is in the range of 26–36% for plates with simply supported edges, irrespective of the loading conditions. For the plates with clamped edges, the corresponding gains in buckling resistance are in the range of 9–12% for plates subjected to compression or pure in-plane bending loads and potentially up to 30% for plates subjected to shear loads.  相似文献   

15.
Stability criteria that evaluate the effects of combined conservative and nonconservative end axial forces on the elastic divergence buckling load of prismatic beam-columns with semirigid connections is presented using the classic static equilibrium method. The proposed method and stability equations follow the same format and classification of ideal beam-columns under gravity loads presented previously by Aristizabal-Ochoa in 1996 and 1997. Criterion is also given to determine the minimum lateral bracing required by beam-columns with semirigid connections to achieve “braced” buckling (i.e., with sidesway inhibited). Analytical results obtained from three cases of cantilever columns presented in this paper indicate that: (1) the proposed method captures the limit on the range of applicability of the Euler’s method in the stability analysis of beam-columns subjected to simultaneous combinations of conservative and nonconservative loads. The static method as proposed herein can give the correct solution to the stability of beam-columns within a wide range of combinations of conservative and nonconservative axial loads without the need to investigate their small oscillation behavior about the equilibrium position; and (2) dynamic instability or flutter starts to take place when the static critical loads corresponding to the first and second mode of buckling of the column become identical to each other. “Flutter” in these examples is caused by the presence of nonconservative axial forces (tension or compression) and the softening of both the flexural restraints and the lateral bracing. In addition, the “transition” from static instability (with sidesway and critical zero frequency) to dynamic instability (with no sidesway or purely imaginary sidesway frequencies) was determined using static equilibrium. It was found also that the static critical load under braced conditions (i.e., with sidesway inhibited) is the upper bound of the dynamic buckling load of a cantilever column under nonconservative compressive forces. Analytical studies indicate the buckling load of a beam-column is not only a function of the degrees of fixity (ρa and ρb), but also of the types and relative intensities of the applied end forces (Pci and Pfj), their application parameters (ci, ηj, and ξj), and the lateral bracing provided by other members (SΔ).  相似文献   

16.
In this paper, one investigates the elastic flexural-torsional buckling of linearly tapered cantilever strip beam-columns acted by axial and transversal point loads applied at the tip. For prismatic and wedge-shaped members, the governing differential equation is integrated in closed form by means of confluent hypergeometric functions. For general tapered members (0<(hmax?hmin)/hmax<1), the solution to the boundary value problem is obtained in the form of a Frobenius’ series, which is shown to converge in the interior of the domain and at the boundary if and only if 0<(hmax?hmin)/hmax<1/2. Therefore, for 1/2?(hmax?hmin)/hmax<1 the Frobenius’ series solution cannot be used to establish the characteristic equation for the cantilever beam-columns; the problem is then solved numerically by means of a collocation procedure. Some of the analytical solutions (buckling loads) were compared with the results of shell finite-element analyses and an excellent agreement was found in all cases, thus validating the mathematical model and confirming the correctness of the analytical results. The paper closes with a discussion on the convexity of the stability domain (in the load parameter space) and the accuracy of approximations based on Dunkerley-type theorems.  相似文献   

17.
Theoretical studies of the influence of shear deformation on the flexural, torsional, and lateral buckling of pultruded fiber reinforced plastic (FRP)-I-profiles are presented. Theoretical developments are based on the governing energy equations and full section member properties. The solution for flexural buckling is consistent with the established solution based on the governing differential equation. The new solutions for torsional and lateral buckling incorporate a reduction factor similar to that for flexural buckling. The solution for lateral buckling also incorporates the influence of prebuckling displacements. Closed form solutions for a series of simply supported, pultruded FRP I-profiles, based on experimentally determined full section flexural and torsional properties, indicate the following conclusions. For members subjected to axial compression, shear deformation can reduce the elastic flexural and torsional buckling loads by up to approximately 15% and 10%, respectively. For members subjected to bending, prebuckling displacements can increase the buckling moments by over 20% while shear deformation decreases the buckling moments by less than 5%.  相似文献   

18.
For military and civilian applications, there exists a need for lightweight, inexpensive, short-span bridges that can be easily transported and erected with minimal equipment. Owing to its favorable properties, fiber-reinforced polymer (FRP) has been shown to be feasible for the construction of such bridges. Investigations into the behavior of a short-span bridge structural concept, adapted to the material properties of commercially available glass FRP (GFRP) pultruded products, are presented. A 4.8-m span prototype was built from GFRP sections, bonded throughout to form a tapered box beam, with a width of 1.2?m and a height at midspan of approximately 0.5?m. The box beam represents a single trackway of a double-trackway bridge, whose trackways could be connected by light structural elements. The quasi-static and dynamic behavior of the prototype box beam was investigated in ambient laboratory and field conditions to assess the design and construction techniques used, with a view to designing a full-scale 10-m GFRP bridge. Laboratory testing of the prototype box beam used single and pairs of patch loads to simulate wheel loading. These tests confirmed that the box beam had sufficient stiffness and strength to function effectively as a single trackway of a small span bridge. Field testing of the structure was undertaken using a Bison vehicle (13,000?kg), driven at varying speeds over the structure to establish its response to realistic vehicle loads and the effects of their movement across the span.  相似文献   

19.
Load and resistance factor design (LRFD) is the standard structural design practice. In order for foundation design to be consistent with current structural design practice, the use of the same loads, load factors, and load combinations would be required. In this paper, we review the load factors presented in various LRFD codes from the United States, Canada, and Europe. A simple first-order second-moment (FOSM) reliability analysis is presented to determine appropriate ranges for the values of the load factors. These values are compared with those proposed in the codes. The comparisons between the analysis and the codes show that the values of load factors given in the codes generally fall within ranges consistent with the results of the FOSM analysis. However, it would be desirable for the successful development and adoption of the geotechnical component of LRFD codes to have uniformity of load-factor values across different codes for the loads that are common for virtually all civil structures.  相似文献   

20.
Beam-columns, in general, undergo axial elongation not only from the applied axial forces but also from the transverse deflections. A practical method that takes into account the effects of these transverse deflections on the total axial deformation of a beam-column δt is by multiplying the first-order axial stiffness AE∕L by the geometrically nonlinear factor s1 [i.e., δt = P∕(s1AE∕L)]. A general solution for s1 is derived for the combined effects of end moments, a uniformly distributed load, a series of concentrated loads, sidesway, and out-of-straightness. This solution requires numerical integration and is limited to 3D elastic prismatic beam-columns with doubly symmetrical cross sections or singly symmetrical 2D beam-columns under small strains. The proposed solution can be applied to the second-order and stability analyses of frames and to the evaluation of the axial load induced by transverse loads in beams built into rigid supports. These effects are particularly important in long-span structures. An example is presented to show the validity of the proposed formulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号