首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
J.H. Han    G.H. Seo    I.M. Park    G.N. Kim    D.S. Lee 《Journal of food science》2006,71(6):E290-E296
ABSTRACT:  Hydrophobic beeswax emulsions were incorporated into hydrophilic starch films to modify physical, mechanical, and thermal properties of the films. Beeswax was added in the film-forming solution of high-amylose pea starch (35% to 40% amylose w/w) at the level of 0%, 10%, 20%, 30%, and 40% w/w of starch with glycerol as a plasticizer (40/60 of glycerol/starch). Addition of beeswax affected mechanical properties, significantly reducing tensile strength and elongation and increasing elastic modulus. Beeswax addition decreased water vapor permeability and increased oxygen permeability. However, the addition of hydrophobic wax particles in starch films marginally affected these physical properties below 30% beeswax in the films. Beeswax addition at the 40% concentration formed amylose–lipid complex that caused the dramatic changes of physical and thermal properties of the films.  相似文献   

2.
Pea‐protein isolate solutions were heat‐denatured and dried to form stand‐alone edible films. Heat treatment at 90 °C over 5 min increased tensile strength and elongation‐at‐break, and decreased the elastic modulus. No significant differences were found in the initial contact angle of water and surface energies of heat‐denatured films from those of nonheated films except for the 20 min heat‐treated film. Additionally, heat denaturation reduced the water absorption rate of the films to 19 to 40% of the nonheated film. FTIR spectroscopy showed that more water existed in the nonheated films as compared to the heat‐denatured films. Electrophoresis studies suggested that intermolecular disulfide bonds were created during heat denaturation, which resulted in increased film integrity.  相似文献   

3.
To identify the significant contribution of intermolecular hydrogen bonds of starch molecules to the film structure formation, pH of film‐forming solutions was adjusted and also various salts (NaCl, CaCl2, CaSO4, and K2SO4) were mixed into the glycerol‐plasticized pea starch film. The film made from pH 7 possessed the highest tensile strength‐at‐break (2 times) and elastic modulus (4 to 15 times) and the lowest elongation‐at‐break compared with those of the films made from acid and alkali environments. The pH 7 film also has the highest film density and the lowest total soluble matter. At the level of 0.01 to 0.1 M of CaSO4 and 0.1 M of K2SO4 in a kilogram of starch, the water solubility of the film increased, while chloride salts slightly lowered the solubility. NaCl and CaSO4 reduced water vapor permeability (WVP), while CaCl2 slightly increased WVP at 0.01 and 0.06 M concentrations, and K2SO4 significantly increased WVP at 0.03 and 0.15 M. Presence of salts increased tensile strength (5 to 14 times than the control films) and elastic modulus (35 to 180 times) of starch film at 0.01 to 0.03 M of CaSO4 and K2SO4. Elongation‐at‐break increased significantly as salt concentration increases to an optimal level. However, when the concentration exceeded above the optimal level, the E of starch films decreased and showed no significant difference from the control film. Overall, the addition of salts modified physical and mechanical properties of pea starch films more than pH adjustment without any salt addition.  相似文献   

4.
ABSTRACT: The tensile properties, water vapor permeability, oxygen permeability at different relative humidities (RH), and water solubility of edible films made of high-amylose rice starch (RS) or pea starch (PS) were measured and compared with the most commonly used edible films. Photomicrography of starch films shows amylopectin-rich gels and amylose-rich granules. The addition of glycerol into starch films made amylose-rich granules swollen and continuously dispersed between amylopectin-rich gels. Tensile strength of RS and PS films decreased when RH increased from 51% to 90%, whereas elongation-at-break (E) of both films increased when RH increased. Water vapor permeabilities of both films were similar, resulting in 130 to 150 g mm/m2/d /kPa. Oxygen permeability of RS and PS were very low (< 0.5 cm3μm/m2/d/kPa) below 40% RH, and 1.2 to 1.4 at 45% RH. Water solubility of PS film was 32.0%, which is lower than that of RS film (44.4%). Overall high-amylose rice and pea starch films possess an excellent oxygen barrier property with extremely high stretchability.  相似文献   

5.
Edible starch films were produced from pea starch and various plasticizers (mannose, glucose, fructose, and glycerol and sorbitol) at the ratio of 4.34, 6.50, 8.69, and 10.87 mmol plasticizer per gram of starch. After film specimens were conditioned at 50% relative humidity, mechanical properties (tensile strength, elongation, and modulus of elasticity), water vapor permeability (WVP), moisture content, and thermomechanical properties (G’ and tan8) were determined as a function of plasticizer concentration. At all concentration levels, monosaccharides (mannose, glucose, and fructose) made the starch films stronger (higher tensile strength) and more stretchable than polyols (glycerol and sorbitol), while WVP of monosaccharide‐plasticized starch films were lower than those of polyol‐plasticized starch films, especially at higher plasticizer concentration levels. Except for 4.34 mmol/g of mannose‐plasticized film, all the other films showed similar modulus of elasticity at the same plasticizer concentration. Polyol‐plasticized films had lower T than the monosaccharide‐plasticized films. Glucose‐ and sorbitol‐plasticized films needed more activation energy to go through glass transition than others. After all, research results showed that not only the polyols but also the monosaccharides were effective in plasticizing starch films. It is concluded that molecular size, configuration, total number of functional hydroxyl group of the plasticizer as well as its compatibility of the plasticizers with the polymer could affect the interactions between the plasticizers and starch molecules, and consequently the effectiveness of plasticization.  相似文献   

6.
ABSTRACT:  The overall research objective was to investigate the effects of wax application to casein films on the physical, morphological, mechanical, and water barrier properties of the films. Casein films were prepared by cross-linking with zein hydrolysate using transglutaminase. Wax was either incorporated into the film-forming solution or coated onto the casein films. The physical, morphological, and mechanical properties of wax-incorporated or wax-coated casein films were characterized. The wax-casein films exhibited darker color than casein film, and the film thickness ranged from 0.2 to 0.4 mm. Wax application significantly decreased the tensile strengths and Young's Modulus of casein films. The wax-incorporated films exhibited a greater reduction in tensile strength and Young's Modulus than the wax-coated films. The microstructures of wax-casein films were relatively smooth and uniform when observed under a scanning electron microscope. Wax applications significantly decreased the water vapor permeability (WVP) of the casein films, and the wax-coated casein films exhibited a greater decrease in WVP than the wax-incorporated films.  相似文献   

7.
Water barrier and mechanical properties were measured for soy protein isolate (SPI) films plasticized with glycerol (GLY) and 1 of the plasticizers (propylene glycol [PG], polyethylene glycol [PEG], sorbitol [SOR], or sucrose [SUC]) at a ratio of 25:75, 50:50, 75:25, and 0:100. Plasticizer type as well as the plasticizer ratio in the GLY: plasticizer mixtures affected the film water barrier and mechanical properties. An addition of as little as 25% of a less hygroscopic plasticizer in the mixture induced significant reduction in water vapor permeability (WVP) of SPI films. However, at least 50% of the mixture needs to be GLY to show significant improvement in tensile strength (TS). From our experimental design, 50:50 GLY:SOR was the recommended combination because of its comparatively low WVP value and relatively high flexibility and strength. Incompatibility of GLY:PEG plasticizer mixture in SPI film was observed by surface migration of PEG from the film matrix.  相似文献   

8.
Mechanical and Barrier Properties of Egg Albumen Films   总被引:3,自引:0,他引:3  
Films were cast and dried from heated, alkaline aqueous egg albumen solutions containing glycerin (GLY) at 30, 40, or 50% w/w of protein, polyethylene glycol (PEG) at 50 or 60%, or sorbitol (S) at 50 or 60% as plasticizers. PEG-plasticized (60%) films also were prepared by substituting 10, 30, 50, or 70% of albumen with yolk solids. Film tensile strength (TS), elongation at break (E), water vapor permeability (WVP), and Hunter color values were measured. At a plasticizer content of 50%, films with S had the lowest WVP while films with PEG had the greatest E. S- and PEG-plasticized films had greater TS than GLY-plasticized films. Yolk solids decreased film TS, E, and WVP while increasing film yellowness.  相似文献   

9.
Tensile and Barrier Properties of Edible Films Made from Whey Proteins   总被引:5,自引:0,他引:5  
Y. Fang    M.A. Tung    I.J. Britt    S. Yada    D.G. Dalgleish 《Journal of food science》2002,67(1):188-193
ABSTRACT: Whey protein isolate (WPI)-based edible biopolymer films were prepared using a film-forming stage designed to provide heat-induced gelation. Effects of whey-protein ratios, calcium, glycerol (plasticizer), and emulsion droplet incorporation on film tensile and barrier properties were investigated. Protein ratios had less influence on tensile strength, elongation, and water vapor permeability than glycerol and calcium ion concentrations. Semitransparent films with reasonably high tensile and UV-light barrier properties and moderate water vapor barrier properties were prepared from WPI:20% glycerol:10 mM calcium solutions. Microstructure analysis revealed the influence of glycerol and calcium concentrations on gel networks, which could be related to film tensile properties.  相似文献   

10.
乳清浓缩蛋白可食用膜成膜工艺的研究   总被引:5,自引:0,他引:5  
研究了乳清浓缩蛋白可食用膜的成膜工艺,分析了蛋白质浓度、甘油浓度和加热温度对可食用膜透水性和透氧性的影响,并确定了可食用膜阻隔性能的优化工艺参数。研究结果表明,可食用膜的阻水性随蛋白质浓度和甘油浓度的增大而下降,阻氧性随甘油浓度增大而下降。加热温度为70℃时,膜的阻水性和阻氧性达到最佳。响应面分析表明,当蛋白质浓度为100 g/L,甘油浓度为27 g/L,加热温度为69℃时,乳清浓缩蛋白可食用膜的综合通透性能为最佳,其透湿系数为0.004 35 g·mm/(m~2·h·kPa),透氧系数为0.134 cm~3·mm/(m~2·min·kPa)。  相似文献   

11.
12.
Properties of Edible Films from Total Milk Protein   总被引:5,自引:0,他引:5  
The mechanical properties and water vapor permeability of edible films made from various total milk proteins (TMPs) were investigated. Two TMPs obtained from nonfat dry milk (NDM) by removing lactose and three TMPs obtained from a commercial source were studied. Lactose was extracted from NDM by ultrafiltration or suspension in ethanol followed by filtration. TMP concentrate obtained by ultrafiltration (UF) produced films with the lowest water vapor permeability (WVP) and the highest tensile strength at break. Commercial TMP concentrates produced films more ductile than those from the UF-TMP or retentate from ethanol extraction. Further research is needed to improve mechanical properties of UF-TMP films without increasing the WVP.  相似文献   

13.
Plasticized Whey Protein Edible Films: Water Vapor Permeability Properties   总被引:10,自引:0,他引:10  
Heat treatment, protein concentration, and pH effects on water vapor permeability (WVP) of plasticized whey protein films were examined. The best film formation conditions were neutral pH, aqueous 10% (w/w) protein solutions heated for 30 min at 90°. Isoelectric point adjustment of whey protein with calcium ascorbate buffer increased WVP with increasing buffer concentration, The importance of vacuum application to minimize film pore size was identified using scanning electron microscopy. Polyethylene glycol, glycerol and sorbitol plasticizer concentration affected film WVP. Determining the effects of relative humidity on WVP for plasticized whey protein films enabled prediction of film behavior under any water vapor partial pressure gradient.  相似文献   

14.
Plasticization of Pea Starch Films with Monosaccharides and Polyols   总被引:4,自引:0,他引:4  
ABSTRACT:  Monosaccharides have several hydroxyl groups and a compatible structure with starch polymers resulting in effective plasticization in starch films. Two groups of plasticizers (polyols and monosaccharides) were used to compare their plasticizing efficiency. Fructose, glucose, mannose, galactose, glycerol, sorbitol, ethylene glycol, and maltitol were selected at 13.031 mmol per 100 g of pea starch. Edible starch films were produced after heat gelatinization and dehydration of the 3% starch dispersion. The microstructure, attenuated total reflection foorier transform infrared (ATR-FTIR) characteristics, thickness, moisture content, tensile strength, modulus of elasticity, elongation-at-break, water vapor permeability, and transparency of films were determined. Microstructure of the film solutions showed that some swollen starch granules and their remnants existed in the film. Compared to the FTIR spectra of pure starch films, the spectra of plasticized films showed that more hydrogens bound hydroxyl groups and more water molecules were attracted around starch polymer chains. Ethers were produced in glycerol-plasticized films. Monosaccharide-plasticized films were comparable to the polyol-plasticized films in tensile test, but more resistant in moisture permeation than the polyol-plasticized films. It was assumed that the structural compatibility of monosaccharides with starch might result in denser polymer-plasticizer complex, smaller size of free volume, and less segmental motions of starch chains. In conclusion, monosaccharides were identified as effective plasticizers for starch film.  相似文献   

15.
Biopackaging materials based on fish myofibrillar proteins have been developed. The effects of protein concentration, pH, temperature and storage time before casting on the apparent viscosity of the film forming solution (FFS) were evaluated using experimental design methodology. The first objective was to determine a feasible experimental range for film-forming. The pH and protein concentration had strong interactive effects on FFS viscosity. During FFS storage before casting, partial degradation of high molecular weight protein components led to decreased viscosity, allowing thin layer casting. In the experimental range for film-forming, none of the conditions affected film functional properties. Standard conditions were determined at: pH 3.0, 2.0g protein/100g FFS, 25°C and 6 hr storage. The functional properties of the standard biopackaging were slightly better than those that determined for known protein-based films, with tensile strength close to those of low density polyethylene films.  相似文献   

16.
微波处理对植物蛋白基可食膜特性改善效果的研究   总被引:7,自引:0,他引:7  
王若兰  卞科  许时婴 《食品科学》2002,23(11):93-98
通过微波处理以谷朊粉(WG)、大豆分离蛋白(SPI)为主要成膜原料的可食保鲜膜,研究其对可食膜特性的改善作用,结果表明微波处理能有效改良三种膜的机械性能、感官性能及通透性,特别是对WG/SPI膜的改良效果最好。利用扫描电子显微镜对微波处理前后蛋白膜的微结构进行研究,微波处理对膜的微结构有明显的改善作用,可使膜表面更光滑平整,使膜的横截面更均匀、规则、致密,其中对WG/SPI膜的改善效果最明显。经微波处理后WG膜、SPI膜、WG/SPI膜的横截面微结构接近。微波处理后膜的结构改善效果与膜的外观、机械性能、通透性的改善效果一致。  相似文献   

17.
A continuous gravimetric measurement method was perfected to determine with accuracy the water vapor permeability of edible films. Two substances, methylcellulose and paraffin wax, with different physicochemical properties, were used as films. Factors affecting permeability included the polarity of film components, the homogeneity or dispersion of material in the film and the structure which depends on the distribution of paraffin wax in the composite films. The thickness and the Water Vapor Transmission Rate (WVTR) measurement methods resulted in different values for permeability. WVTR increased with hydrophilicity and heterogeneity. Modeling trials con-cerning water vapor transport indicated the major influence that structure had on permeability. Waxlaminated fiIms had a very high barrier efficiency, comparable with that of synthetic films.  相似文献   

18.
Permeability and Mechanical Properties of Cellulose-Based Edible Films   总被引:1,自引:0,他引:1  
Factors affecting barrier properties [oxygen permeability (OP) and water vapor permeability (WVP)] and mechanical properties [tensile strength (TS) and elongation (E)] were investigated for methyl cellulose (MC) and hydroxypropyl cellulose (HPC) films. OP, WVP and TS of MC and HPC films increased as the molecular weight (MW) of the cellulose increased. E of MC films increased as MW increased, but E of HPC films was highest for the intermediate MW of 370,000. OP, WVP and TS of MC films were not a function of thickness, but E slowly increased as film thickness increased. OP and WVP of HPC films were not relatable to film thickness, but TS and E of HPC films slowly increased as film thickness increased. TS decreased and E increased for both film types as concentration of plasticizers was increased. Plasticizers enhanced or retarded OP and WVP of cellulose-based films, depending on their concentrations.  相似文献   

19.
Permeability Properties of Fruit Puree Edible Films   总被引:1,自引:0,他引:1  
The potential of fruit purees as edible mass transfer barriers was studied. Water vapor and oxygen permeabilities (WVP and O2P) of peach puree films were evaluated at different relative humidities (RH) and temperatures (T). Peach puree was not a good water barrier. Peach and apricot films exhibited lower WVPs than pear and apple films. Calcium addition, RH increases and T decreases resulted in increased WVP values for peach puree edible films. WVPs of peach films were compared with other edible and synthetic films. Peach puree films were good oxygen barriers. RH increases resulted in exponential increases in O2P. Most edible and many synthetic polymers showed higher O2Ps at equivalent conditions.  相似文献   

20.
可食性膜阻水特性的研究   总被引:1,自引:0,他引:1  
李磊  牛坤  马庆一 《食品科学》2008,29(2):145-150
本实验采用拟杯子法,以CaCl2为吸水材料,以棉布为膜载体,在温度25±2 ℃、相对湿度为90%±2%的条件下,测定了各种膜的水蒸气透过率,并比较了它们的阻水特性.结果表明,海藻酸钠膜是具有最佳阻水性的多糖膜;明胶膜比大豆蛋白膜阻水性更优;脂质膜的阻水率按以下顺序依次增大:月桂酸<棕榈酸<硬脂酸<石蜡<蜂蜡,乙酰化单甘酯的阻水性优于单甘酯;增塑剂山梨醇、甘油及乙二醇的加入会使膜的阻水性降低;在三元膜中,脂质膜用作被膜剂比用作乳化剂具有更好的效果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号