首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 841 毫秒
1.
Reversible temper embrittlement has been frequently observed in many different low alloy steels serving at high temperature, e.g. order of 500 °C. This type of embrittlement can change the brittle transgranular fracture mode to intergranular decohesion with subsequent change in fracture stress and fracture toughness. The present paper deals with the influence of the prior austenite grain size and isothermal aging time on the degree of embrittlement of 2.25Cr-1Mo steel, which is very popular for its use in power generating and other petrochemical industries. In this research work, the specimens of 2.25Cr-1Mo steel were treated in three different austenitizing temperatures along with different isothermal embrittling time periods. Then the induced degree of embrittlement was characterized by the fracture stress values at −196 °C and area fraction of intergranular failure. The outcome of the experimental results shows that the increase in austenite grain size and/or isothermal embrittling time severely weakens the grain boundary cohesive strength leading to brittle intergranular failures and thus to a greater degree of temper embrittlement.  相似文献   

2.
周顺深 《金属学报》1987,23(3):217-222
本文研究了蠕变断裂韧性对三种低合金Cr-Mo-V钢在蠕变一疲劳交互作用下裂纹开裂和扩展的影响.试验表明,材料韧性对裂纹开裂和扩展起重要作用,脆性状态时,裂纹开裂时间比蠕变时短,二者间的裂纹扩展速度无明显差别;韧性状态时,裂纹开裂时间不仅比蠕变时短,而且其裂纹扩展速度比蠕变时大得多.此外,低合金Cr-Mo-V钢经蠕变一疲劳交互作用后有脆化倾向,其脆性程度取决于钢的原始韧性值.韧性状态时,蠕变-疲劳交互作用显著促使三种Cr-Mo-V钢由韧性向脆性转变;而在脆性状态时,这种脆性转变不明显。  相似文献   

3.
1. IntroductionCr12MoV steel is used widely as an important high wear resistallt cold die steel aroundthe world[1]. It is well known that Cr12MoV steel has networked carbide in the solidification structure, which leads to the intergranular brittleness. Moreover. The networkcarbide is too stable to be changed during heat treatment even at high temperaturely]. Inthe conventional process, forging is needed to break etwork carbide into a granular form.However, partly owing to Cr12MoV steel hav…  相似文献   

4.
Phosphorus is a very common trace element that can segregate at prior austenite grain boundaries and/or carbide/matrix interfaces of low alloy steels at high temperature (e.g., order of 500 °C) and adversely affect the fracture properties. This paper investigates segregation of P during reversible temper embrittlement (96 h at 520 °C) of quenched and fully tempered 2.25Cr-1Mo steel by Auger electron spectroscopy and describes the segregation mechanism. This paper also describes the effect of P segregation on fracture resistance and fracture mode of unembrittled steels, respectively, by fracture toughness testing over a temperature range of −196 °C to 20 °C and fractography in scanning electron microscopes. During temper embrittlement phosphorus segregation has been attributed due to the mechanism of “carbide rejection”. This segregation caused a reduction in fracture toughness values of the quenched and tempered steels at all test temperatures and an increase in the transition temperature. Phosphorus segregation also changed the brittle fracture micromechanism of quenched and fully tempered samples from one of transgranular cleavage to a mixed mode of fracture (transgranular cleavage and intergranular decohesion). The micromechanism of fracture at temperatures from the upper shelf, however, remained almost unchanged.  相似文献   

5.
Investigations Into transgranular and intergranular stress corrosion cracking of austenitic stainless steels In hot magnesium chloride solutions The stress corrosion cracking (SCC) of austenitic stainless steels in hot magnesium chloride solutions is known to be transgranular. Therefore the slip-step-dissolution model is most favourable when explaining the failure mechanism. Constant load and constant extension rate tests (CERT) show that both methodes are almost equivalent. Moreover constant extension rate tests in more concentrated magnesium chloride solutions at 135°C reveal a small potential range of intergranular stress corrosion cracking more negative than the range of transgranular SCC. Observations of crack nucleation and crack propagation make plain that crack nucleation is a localized corrosion process. Pitting produces crack nucleis in the elastic range whereas cracks start along slip lines after plastic deformation. Fractography of specimens which failed by intergranular and transgranular SCC show macroscopically brittle fracture surfaces. Therefore a model is proposed which explains crack propagation by hydrogen-induced intermitted cracking at high-stressed sites at the crack tip.  相似文献   

6.
朱显刚  熊建坤 《电焊机》2017,(12):82-86
根据新型转子25Cr2Ni4MoV成分和合金特点,分别进行HAZ硬度、斜Y坡口裂纹、冷裂纹插销试验等,由试验结果可知,该钢种的冷裂纹敏感性强,焊接时预热温度应大于300℃。对接头常温力学性能和高温短时拉伸测试,结果表明该钢焊后的接头强度接近母材,塑性较好,焊缝的冲击韧性较高,接头微观组织为回火贝氏体和少量铁素体组织,断口由脆性断裂区和纤维断裂区组成,脆性断裂区为沿晶和准解理,随着预热温度的提高,沿晶成分减少,准解理部分增多。  相似文献   

7.
《Acta Materialia》2008,56(18):5293-5303
Quasi steady-state creep crack growth is widely associated with the nucleation and growth of voids on grain boundaries ahead of the crack tip. In this paper, a micromechanics-based constitutive law is used to study the velocity-dependent fracture toughness of porous solids under extensive creep conditions. Void growth and coalescence in the fracture process zone is modeled by a nonlinear viscous microporous strip of cell elements. Under steady-state crack growth, two dissipative processes contribute to the macroscopic fracture toughness: the work of separation in the fracture process zone, and creep dissipation in the background material. Under extensive creep conditions, the competition between these two processes produces an inverted U-shaped C1–velocity curve. The effects of rate sensitivity, initial porosity as well as hydrogen attack on fracture toughness are studied. The numerically simulated fracture toughness vs. crack velocity curves show good agreement with existing experimental results.  相似文献   

8.
《Acta Materialia》2007,55(19):6553-6560
After semi-solid treatment and rapid quenching, bearing steel 100Cr6 exhibits a martensitic structure with a large amount of retained austenite along the grain boundaries. The toughness values are significantly lower than after conventional hardening, even when the alloys are post-processed by an additional heat treatment step. Slow cooling from the freezing range results in a reduced amount of retained austenite and improved toughness properties. The low impact toughness values of the rapidly cooled conditions are associated with the appearance of intergranular fracture, while the slowly cooled condition fails in a transgranular manner. The structural development and the mechanical behaviour are explained by severe segregation of the main alloying elements during solidification, but also by sulphur enrichment in the remaining liquid phase. Chain-like precipitates of MnS are formed along the grain boundaries, similar to the well-known ‘burning’ phenomenon of low-alloyed steels.  相似文献   

9.
High-carbon and high-chromium alloy steels are prone to pitting and intergranular corrosion, which reduces corrosion resistance. The precipitation behavior of the carbides of high-carbon and high-chromium alloy steels is one of the main factors affecting pitting and intergranular corrosion of stainless steel. In this study, 5Cr15MoV stainless steel was heated to 1,200℃ and then cooled by cooling rates varying from 25 to 150°C/min. The precipitation behavior of grain boundary carbides of 5Cr15MoV steel at different cooling rates, and its effect on the corrosion resistance of materials was studied. The results show that the carbides of 5Cr15MoV steel mainly precipitate along the grain boundaries, which leads to the formation of chromium-depleted zones near the grain boundaries and reduces resistance to intergranular corrosion. It has been found that a higher cooling rate shortens the width of the Cr-depleted zone near the boundary from 0.871 to 0.569 μm, reduces the Cr-concentration gradient near the grain boundary from 36.422% to 12.667%, and suppresses the nucleus growth rate of grain boundary carbides. As the cooling rate increases, the corrosion current density decreases from 13.29 to 2.42 μA/cm2. The corrosion rate is the lowest, while the cooling rate is 150°C/min. The corrosion rate decreases from 218.339 to 158.488 mm/a. The phenomenon of intergranular corrosion and pitting corrosion was found to be weakened; and thereby, it is shown that an intensive cooling rate can improve the corrosion resistance of 5Cr15MoV steel.  相似文献   

10.
催化装置滑阀螺栓使用时发生断裂,导致阀体导轨和阀板脱落.通过对滑阀导轨GH4033螺栓进行宏观观察、化学成分分析、显微组织检查、断口分析、微观观察,确定其断裂原因.结果表明:该螺栓是由高温蠕变损伤引起的沿晶脆性断裂;因热处理不当,螺栓组织中晶粒粗大,第二相和沿晶碳化物较少,弱化细晶强化、第二相强化和晶界强化作用,导致蠕...  相似文献   

11.
In general, the low-temperature brittle fracture mode of unembrittled ferritic steel is transgranular cleavage. During temper embrittlement, impurity elements, such as sulfur (S), phosphorus (P), antimony (Sb), arsenic (As), and tin (Sn), segregate to prior austenite grain boundaries, which results in a decrease in the grain boundary cohesive strength. As a result, the brittle transgranular cleavage fracture mode changes to intergranular decohesion in association with the decrease in the critical fracture (stress (σ F) as well as the fracture toughness (K). However, the appearance of intergranular facets on the fracture surface does not cause a decrease in the K and σ F values. In this work, quenched and fully tempered 2.25Cr-1Mo steel (in an unembrittled condition that exhibits almost 100% brittle transgranular cleavage fracture) has been embrittled for 24, 96, and 210 h at 520 °C to produce different proportions of intergranular fracture. These unembrittled and embrittled steel specimens were tested to measure K (at −120 and −196 °C) and σ F (at −196 °C). The experimental results and detailed fractographic observations show that the K and σ F values decrease with an increase in the area fraction of intergranular fracture, provided that the area fraction of the intergranular facet on the brittle fracture surface exceeded a certain critical level, approximately 20–22%.  相似文献   

12.
Creep lives of high Cr ferritic heat resisting steel weldments decrease due to Type Ⅳ fracture, which occurs as a result of formation and growth of creep voids and cracks on grain boundaries in fine-grained heat affected zone (HAZ). Because boron is considered to suppress the coarsening of grain boundary precipitates and growth of creep voids, we have investigated the effect of boron addition on the creep properties of 9Cr steel weldments. Four kinds of 9Cr3WSCoVNb steels with boron content varying from 4.7×10-5 to 1.8×10-4 and with nitrogen as low as 2.0×10-5 were prepared. The steel plates were welded by gas tungsten arc welding and crept at 923K. It was found that the microstructures of HAZ were quite different from those of conventional high Cr steels such as P91 and P92, namely the fine-grained HAZ did not exist in the present steel weldments. Boron addition also has the effect to suppress coarsening of grain boundary carbides in HAZ during creep. As a result of these phenomena, the welded join  相似文献   

13.
GH4169D合金电子束焊接接头显微组织和持久断裂特征   总被引:1,自引:0,他引:1  
采用金相显微镜和扫描电镜分析了GH4169D合金电子束焊接接头的显微组织,利用显微硬度计测试了母材、热影响区和焊缝的显微硬度,采用体式显微镜和扫描电镜研究了焊接接头持久断裂特征。结果表明,GH4169D母材中的主要析出相为1~20μm长的片层状晶界η相、30~80 nm的颗粒状γ′相和少量的碳氮化物。热影响区中的主要析出相为10~20 nm的颗粒状γ′相,几乎没有晶界η相。焊缝中为枝晶组织,枝晶间存在含有共晶组织的白色析出相,析出相尺寸为2~6μm,枝晶杆中含有10 nm以下的细小颗粒状γ′相。母材的显微硬度低于热影响区和焊缝,不同区域的显微硬度主要受γ′相尺寸的影响。焊接接头的持久断裂过程包括蠕变裂纹扩展、快速扩展和瞬断3个阶段,蠕变裂纹扩展区中为沿晶断裂,快速扩展区中为沿晶和穿晶混合断裂,瞬断区为穿晶断裂。蠕变裂纹扩展起始于试样表面的热影响区,热影响区中晶界η相含量低和裂纹尖端晶界氧化是导致焊接接头持久性能低于母材的主要原因。  相似文献   

14.
对5 mm厚铝合金7050搅拌摩擦焊接头微区进行了低周疲劳裂纹扩展试验,研究了焊核区、前进侧及后退侧热力影响区的疲劳裂纹扩展行为. 结果表明,焊核区的疲劳裂纹扩展速率最快,前进侧热力影响区次之,后退侧热力影响区最慢. 焊核区疲劳裂纹呈沿晶与穿晶混合方式扩展,热力影响区的裂纹主要以穿晶方式进行扩展. 裂纹偏转或裂纹产生分支是热力影响区疲劳裂纹扩展速率降低的原因. 疲劳裂纹扩展初期,焊核区断口有疲劳辉纹出现;热力影响区断口并没有找到疲劳辉纹,而是出现了轮胎压痕花样. 疲劳裂纹稳态扩展期,焊核区和热力影响区断口均有疲劳辉纹.  相似文献   

15.
The microstructures and room temperature fracture toughness of directionally solidified NiAl-xCr-6Mo (x = 28, 32 and 36 at%) alloys were investigated. Fully eutectic microstructure could be obtained in the alloys over a wide composition range. High temperature gradient could increase the planar/cellular transition rate and expand the eutectic coupled growth zone. The volume fraction of Cr(Mo) strengthening phase increased with the increasing content of Cr, accordingly, the fracture toughness of NiAl–Cr(Mo) alloys also gradually increased. The fracture toughness of 26.15 MPa m1/2 was obtained in the NiAl-36Cr-6Mo hypereutectic alloy solidified at withdrawal rate of 10 μm/s and temperature gradient of 600 K/cm, which is the highest value in the NiAl–Cr–Mo alloy system until now. Well-aligned microstructure was beneficial to the enhancement of the fracture toughness, while the existence of primary phase seriously deteriorated the toughness. All the directionally solidified NiAl–Cr(Mo) alloy failed as brittle quasi-cleavage fracture. Some toughening mechanisms, such as crack bridging, crack nucleation, crack blunting, crack deflection, interface debonding and shear ligament toughening as well as linkage of microcracks were observed. In addition, mobile dislocation generated from the interface also had significant influence on the toughness.  相似文献   

16.
A microstructural model of intergranular fracture in textured materials is presented. In this model, the material is represented by a two-dimensional microstructure with non-regular polygonal grains which represents material's texture and grain shape measured in experiments or calculated from Monte Carlo simulations. The grain boundary character, grain boundary energy, and fracture stress are assigned to each grain boundary according the grain boundary character distribution. Intergranular fracture susceptibility is analyzed by defining the probability of finding a continuous path along the grain boundaries which are intrinsically susceptible to fracture. In this analysis the orientations of the grain boundary with respect to the applied or residual tensile stress axis is considered. The probability of intergranular fracture for each grain boundary depends on the intergranular fracture resistance, the interface orientation relative to the stress axis, and a value of the tensile stress acting on the grain boundary. The crack arrest distance and the fracture toughness are calculated in terms of the frequency of low-energy grain boundaries, fracture stress of low-energy grain boundary, angle distribution of grain boundary interfaces, and anisotropy of grain shape. The results indicate that the fracture toughness increases and the crack arrest distance decreases dramatically with increasing the frequency of the low-energy grain boundaries. Lowering the grain boundary energy can improve the fracture toughness and decrease the crack arrest distance. The angle distribution of grain boundary interfaces and the grain shape factor are also very effective in controlling the fracture toughness. High fracture toughness of polycrystalline materials is related to the presence of a high frequency of low-energy boundaries which are resistant to fracture. The best fracture toughness for brittle materials can be achieved by controlling the frequencies of the low-energy grain boundaries, the grain boundary character, and the boundary inclination.  相似文献   

17.
The influence of different solution temperature on microstructure and impact toughness of cobalt-free maraging steel 00Ni14Cr3Mo3Ti was investigated by SEM and X-Ray diffractometer.The experimental results showed that with the solution temperature variation, the martensite morphology has not changed, is still lath martensite.Undissolved Laves phase hindered the dislocation movement after 750 ℃ solution heat treatment, which result in a very low impact absorbed energy, the impact fracture has no obvious plastic deformation, with bad toughness.With the solution temperature increased, the undissolved phase gradually dissolved, the impact absorbed energy increased gradually.All the Laves phase dissolved when reach to 900 ℃, the impact absorbed energy reaches the maximum, is 61 J.Fracture morphology change from brittle fracture into toughness transgranular fracture with deep dimple. When solution temperature is above 900 ℃, with the solution temperature further increase, austenite grain size increases significantly.Average grain diameter of austenite is about 70 μm after 1050 ℃ solution treatment, the density of precipitates on the grain boundary of maraging steel is increase substantially, deformation compatibility deteriorate, which result in the impact absorbed energy decreased significantly.Fracture type becomes transgranular and quasi-cleavage mixed fracture with the characteristics of the river patterns from ductile transgranular fracture.  相似文献   

18.
Summary

This paper describes HAZ‐notched CTOD tests of multipass welds in SMYS = 420–460 MPa class high‐strength steels for offshore structural applications. The weld metal strength overmatch causes different fracture behaviour depending on the actual CGHAZ toughness. When the CGHAZ is completely embrittled, the weld metal strength overmatch leads to the lower bound critical CTOD value. This is due to elevation of the local stress in the CGHAZ caused by the restraint effect of the overmatched weld metal. The fracture surface is generally flat, and brittle fracture originates from the CGHAZ sampled by the fatigue crack front. A larger fraction of the CGHAZ along the crack front gives a smaller critical CTOD value. When the CGHAZ has moderate toughness, however, the weld metal strength overmatch may produce a higher critical CTOD value at brittle fracture initiation. This is due to crack growth path deviation towards the base metal. Plastic deformation preferentially accumulates to a greater extent on the softer base metal side before the critical stress conditions for brittle fracture initiation occur in the CGHAZ. This asymmetrical plastic deformation promotes deviation of ductile crack growth from the crack tip CGHAZ. In this case, the critical CTOD value does not always reflect the CGHAZ toughness itself.

A notch location nearer the weld metal sometimes causes fracture initiation in the weld metal if the fatigue crack tip samples the CGHAZ. Such experimental data do not reflect the real CGHAZ toughness.

The significance of the critical CTOD value obtained in the tests must be determined in the fracture toughness evaluation of the weld CGHAZ. This paper presents a procedure for evaluation of CTOD test results obtained for HAZ‐notched welds that considers the strength mismatch effect.  相似文献   

19.
Crack initiation and propagation in polycrystalline metals and alloys can be characterized by the crack driving force and the resistance to fracture. Interfaces such as grain, sub-grain and interphase boundaries are microstructural features that can resist crack propagation. For iron–silicon polycrystalline steels, brittle fracture occurs predominately by transgranular cleavage but intergranular fracture is enhanced by embrittling heat-treatments. In this paper, we consider the role of deformation twin boundaries on the brittle crack propagation and fracture resistance of poly and single crystals of Fe–3 wt.% Si steel. Three-point bend, impact and miniaturized disc tests have been undertaken at temperatures in the range of 77–273 K. The fractographic features have been characterized with attention being given to (i) the role of the {1 1 2} deformation twins on the propagation of the {0 0 1} cleavage cracks and (ii) the process-zone of the propagating cleavage cracks. The results are discussed with reference to three-dimensional model predictions.  相似文献   

20.
Fatigue crack growth tests were performed to evaluate the susceptibility to hydrogen-enhanced crack growth of AISI 304 and 316 stainless steels (SSs). Sensitization treatment at 650 °C 100 h played little effect on the fatigue crack growth behavior in air, regardless of testing specimens. However, hydrogen accelerated the fatigue crack growth of various specimens to different degrees; sensitized specimens were more susceptible as compared with the un-sensitized ones.

Fatigue fracture appearance of various specimens tested in air exhibited mainly transgranular fatigue fracture together with rarely intergranular fracture and twin boundary separation. Meanwhile, intergranular fracture was found for sensitized specimens tested in hydrogen. Extensive quasi-cleavage fracture related to the strain-induced martensite accounted for the hydrogen-accelerated fatigue crack growth of unstable austenitic SSs. On the other hand, the lower susceptibility of 316H specimens could be attributed to the partial austenite transformation, as evidenced by a mixture of transgranular fracture feature and quasi-cleavage.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号