共查询到18条相似文献,搜索用时 78 毫秒
1.
在pH 5.5~6.8的酸性介质中,交沙霉素(JSM)与茜素(ALZ)反应生成具有正吸收峰和负吸收峰的红色配合物。最大正吸收波长位于426 nm,表观摩尔吸光系数ε为2.14×104L.mol-1.cm-1,线性范围为0~22.0 mg/L;最大负吸收波长位于540 nm,表观摩尔吸光系数(ε)为4.46×104L.mol-1.cm-1,线性范围为0~25.0 mg/L。当用正负光吸收叠加时,灵敏度更高。由此建立了测定交沙霉素含量的分光光度法,并探讨了适宜的反应条件、主要分析化学性质以及方法的精密度和可靠性。该法用于市售交沙霉素药物中交沙霉素含量的测定,结果满意。 相似文献
2.
基于头孢曲松钠能被Fe3+氧化,Fe3+被还原为Fe2+,Fe2+与铁氰化钾生成可溶性普鲁士蓝,通过测定生成的普鲁士蓝在733nm处的吸光度,建立了测定头孢曲松钠的新方法。头孢曲松钠含量在0.11~7.20μg·m L-1范围内与吸光度呈良好线性关系,线性回归方程A=0.2717ρ(μg·m L-1)+0.0325,相关系数R=0.9992,表观摩尔系数ε=1.8×105L·(mol·cm)-1。测定了市售头孢曲松钠粉针剂的含量,平均回收率为100.5%,结果令人满意。 相似文献
3.
4.
赤霉素的光度分析法研究及应用 总被引:3,自引:0,他引:3
赤霉素被高氯酸氧化生成一种化合物。赤霉素浓度在1-25μg/mL范围内遵循朗伯-比尔定律。其摩尔吸光系数为6.60×10^3。该法选择性好,已用于试样分析。 相似文献
5.
赤霉素被高氯酸氧化生成一种蓝色化合物(λmax=420nm)。赤霉素浓度在1~25μg/mL范围内遵循朗伯—比尔定律,其摩尔吸光系数为6.60×103。该法选择性好,已用于试样分析。 相似文献
6.
7.
8.
茜素络合指示剂是在碱性条件下由茜素、甲醛和亚氨基二乙酸缩合而成。实验主要考察了添加N,N-二甲基甲酰胺后,缩合反应中反应时间、反应温度和甲醛的使用量对产品收率的影响。实验表明在加入二甲基甲酰胺、减少甲醛的使用量后收率明显提高。 相似文献
9.
研究了加替沙星与亚甲基蓝的显色反应,建立了测定加替沙星的单波长显色、退色可见分光光度法及双波长叠加可见分光光度法.在pH 2.5~6.5的酸性条件下,加替沙星(GATI)与亚甲基蓝(MTB)反应生成具有正吸收峰和负吸收峰的蓝色配合物,最大正吸收波长位于674 nm,最大负吸收波长位于646 nm,表观摩尔吸光系数(ε)分别为2.65×104L·mol-1·cm-1(正吸收)和1.36×104 L·mol-1·cm-1(负吸收),线性范围为0.2~17.0 mg/L(正吸收)和0.2~15.0 mg/L(负吸收),若采用双波长叠加测定,灵敏度将更高,加替沙星在一定浓度范围内遵从朗伯比尔定律.探讨了适宜的反应条件及主要分析化学性质.该法用于实际样品的测定,结果满意. 相似文献
10.
福美双的分光光度测定法 总被引:3,自引:0,他引:3
根据福美双能与Cu^2+形成黄色络合物的性质,提出用分光光度法测定福美双原药含量的方法,测定波长为430米。本法具有简便、快速的优点。 相似文献
11.
浅谈氟试剂分光光度法测定水中氟化物 总被引:1,自引:0,他引:1
在用氟试剂分光光度法测定水中氟化物过程中,不同版本的检验书籍其显色剂的加入方法有所不同,其中一种方法是将各种显色剂按先后顺序分别加入(方法A),另一种方法是将显色剂临用前混合后一次性加入(方法B).为确定哪一种显色剂的加入方法更佳,特做了一系列的对比实验,结果表明方法B比方法A更加方便、省时,而且其标准曲线的相关系数、加标回收率和测定结果重现性都相对要高些;另外,显色时间选择1 h较佳. 相似文献
12.
本文采用分光光度法对甘氨酸钠的含量进行测定.考察了波长、pH值、显色剂用量、缓冲溶液用量、水浴温度以及水浴时间对测量的影响.在优化的条件下,线性范围为2.0~12.0μg·mL-1(r=0.99962),样品平均回收率为98.4%,相对标准偏差0.41%. 相似文献
13.
14.
介绍了邻-联甲苯胺分光光度法测定氢氧化钠中氯酸钠杂质含量的原理、操作步骤等,并分析了影响测定结果的因素,提出了操作过程中的注意事项。 相似文献
15.
E. C. Beck K. J. Wilson Eric Jungermann 《Journal of the American Oil Chemists' Society》1963,40(10):515-517
A method for determining sodium, potassium, and magnesium in soaps and detergents by means of flame spectrophotometry is described
in detail. Sodium and/or potassium are normally present in high percentages; magnesium is usually found in relatively low
concentrations as part of the antioxidant system of bar soaps. The spectrophotometric procedure has the following advantages
over commonly used wet methods: 1) rapidity, 2) simplicity, and 3) the cations are determined directly and independently of
each other. Soap additives, such as perfumes, colors, super-fatting agents or germicides do not interfere with this method.
Possible interferences between sodium, potassium, and magnesium cations were evaluated and eliminated. Typical examples, including
toilet soaps, combination soap-detergent bars, and sprayed detergents are described.
Presented at the AOCS meeting in Toronto, Canada, 1962. 相似文献
16.
基于金莲橙OO(TPL)与链霉素(STM)在弱酸性条件下反应生成桔黄色离子缔合物,建立了测定链霉素的退色分光光度法.最大退色波长位于442 nm,线性范围为0.1~12.0 mg,/L,表观摩尔吸光系数ε为4.54×104 L·mol-1·cm-1,链霉素在一定浓度范围内遵从比尔定律.该法用于市售硫酸链霉素药物中链霉素含量的测定,回收率99.2%~100.4%. 相似文献
17.
Chun-tao Zhang Hai-rong Wang Yong-li Wang 《Chemical Engineering and Processing: Process Intensification》2010
A promising seeding strategy of internally generated seeds in producing ceftriaxone sodium with a uni-modal crystal size distribution (CSD) was experimentally investigated in batch anti-solvent crystallization. Effects of different seeding policies on product CSDs, both external seeding and internally generated seeding, were experimentally determined. A uni-modal product CSD was obtained without obvious nucleation at high external-seed loadings, while a bi-modal CSD was obtained with plenty of secondary nuclei at low external-seed loadings. The internally generated seeds, prepared by adding pure acetone into the non-seeded saturated solution of ceftriaxone sodium, were fine crystals with a uni-modal, narrow CSD, irrespective of the amount of the added diluent. These fine crystals were grown continuously as seeds by slowly adding a relatively low concentration diluent. The product CSD was uni-modal with relatively large mass-weighted mean size, and the product quality was as good as the one obtained by external seeding. Therefore, such an internally generated seeding policy is expected to be a favorable seeding technology to hopefully substitute for the external seeding policy in the pharmaceutical industry, where external seeding is not welcome because the external seeding policy would destroy the axenic conditions in crystallizer and lead to unstable quality of different batches. 相似文献