首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have characterized an SH3-SH2-SH3 linker protein that is prominently expressed in lymphoid tissues. This protein has 58% sequence identity to Grb2. An identical protein called Grap has been found in hematopoietic cells. In Jurkat cells, T cell receptor activation leads to the association of Grap with phosphoproteins p36/38 and, to a lesser degree, Shc. This interaction is mediated by the Grap SH2 domain, which has similar binding specificity to the Grb2 SH2 domain. Grap also associates via its SH3 domains with Sos, the Ras guanine nucleotide exchange factor; with dynamin, a GTPase involved in membrane protein trafficking; and with Sam68, a nuclear RNA-binding protein that serves as a substrate of Src kinases during mitosis. T cell activation effects an increase in Grap association with p36/38, Shc, Sos, and dynamin. Sam68 binding is constitutive. Phospholipase C-gamma1 and Fyn are also found in activated Grap signaling complexes, although these interactions may not be direct. We conclude that Grap is a prominent component of lymphocyte receptor signaling. Based on the known functions of bound effector molecules, Grap-mediated responses to antigen challenge may include endocytosis of the T cell receptor, cellular proliferation, and regulated entry into the cell cycle.  相似文献   

2.
We have designed and synthesized a (3-aminomethyl-phenyl)-urea scaffold to mimic the X+1-Asn part of the minimal phosphopeptide sequence, Ac-pTyr-X+1-Asn-NH2, recognized by the Grb2-SH2 domain. The resulting compounds show the same degree of affinity as their peptide counterparts for the Grb2-SH2 domain. This is the first example reported to date of ligands of the Grb2-SH2 domain with substantially reduced peptidic character.  相似文献   

3.
Dopamine transporters (DATs) are members of the Na+- and Cl--dependent neurotransmitter and amino acid transporter family predicted by hydrophobicity analysis to have 12 transmembrane-spanning helices. The structure of DAT was studied using the photoaffinity compounds [125I]1-[2-(diphenylmethoxy)-ethyl]-4-[2-(4-azido-3-iodophenyl) ethyl] piperazine ([125I]DEEP), a 1-(2-diphenylmethoxy)-ethyl-4-(3-phenyl propyl)piperazine (GBR analog), and [125I]-3beta-(p-chlorophenyl)tropane-2beta-carboxylic acid, 4'-azido-3'-iodophenylethyl ester ([125I]RTI 82), a cocaine analog, which had been shown in a previous study to become incorporated into different regions of the DAT primary sequence. The proximity of the photolabeled binding sites to integral membrane structures was investigated by subjecting photolabeled membrane suspensions to limited proteolysis with trypsin and separately analyzing the resulting membranes and supernatants for the presence of photolabeled DAT fragments. Trypsin treatment of [125I] DEEP-labeled membranes generated labeled 45- and 14-kDa DAT fragments that immunoprecipitated with an epitope-specific antiserum generated against amino acids 42-59 near the first putative transmembrane domain, whereas [125I]RTI 82 was found in 32- and 16-kDa tryptic fragments that precipitated with an antiserum directed against a sequence near transmembrane domain 4 (amino acids 225-238). All of the photolabeled fragments were recovered in the protease-treated membranes, indicating that they possess integral membrane structures that prevent their release from the membrane as soluble forms. The size of the two smallest fragments in conjunction with their retention in the membrane suggests that incorporation of the photoaffinity ligands occurs in or near membrane spanning regions and delineates the maximum possible distance between the transmembrane structures, incorporated photolabel, and antibody epitopes. Carbohydrate analysis of the fragments identified sialic acids and N-linked oligosaccharides exclusively on the 45-kDa [125I]DEEP-labeled fragment, which, based on size, would be expected to contain four consensus glycosylation sites between putative transmembrane domains 3 and 4. Photoaffinity labeling after trypsin treatment of membranes showed that the larger but not the smaller fragments retain binding capacity, as the 45- and 32-kDa fragments were capable of becoming photolabeled. Binding of photoaffinity ligands at these fragments was displaced with the same pharmacology as that of intact DATs. These results verify numerous aspects of DAT structure and topology heretofore only predicted from theoretical considerations and extend our knowledge of DAT structure-function properties.  相似文献   

4.
The Rous sarcoma virus (RSV) protease S9 variant has been engineered to exhibit high affinity for HIV-1 protease substrates and inhibitors in order to verify the residues deduced to be critical for the specificity differences. The variant has 9 substitutions (S38T, I42D, I44V, M73V, A100L, V104T, R105P, G106V, and S107N) of structurally equivalent residues from HIV-1 protease. Unlike the wild-type enzyme, RSV S9 protease hydrolyzes peptides representing the HIV-1 protease polyprotein cleavage sites. The crystal structure of RSV S9 protease with the inhibitor, Arg-Val-Leu-r-Phe-Glu-Ala-Nle-NH2, a reduced peptide analogue of the HIV-1 CA-p2 cleavage site, has been refined to an R factor of 0.175 at 2.4-A resolution. The structure shows flap residues that were not visible in the previous crystal structure of unliganded wild-type enzyme. Flap residues 64-76 are structurally similar to residues 47-59 of HIV-1 protease. However, residues 61-63 form unique loops at the base of the flaps. Mutational analysis indicates that these loop residues are essential for catalytic activity. Side chains of flap residues His 65 and Gln 63' make hydrogen bond interactions with the inhibitor P3 amide and P4' carbonyl oxygen, respectively. Other interactions of RSV S9 protease with the CA-p2 analogue are very similar to those observed in the crystal structure of HIV-1 protease with the same inhibitor. This is the first crystal structure of an avian retroviral protease in complex with an inhibitor, and it verifies our knowledge of the molecular basis for specificity differences between RSV and HIV-1 proteases.  相似文献   

5.
To mimic the sandfly pool feeding process and characterize the cellular and biochemical events that occur during the early stages of promastigote-host interaction, we developed an ex vivo model of human blood infection with Leishmania promastigotes. Within 30 s of blood contact, Leishmania promastigotes bind natural anti-Leishmania antibodies, which then activate the classical complement pathway and opsonization by the third component of complement. The opsonized promastigotes undergo an immune adherence reaction and bind quantitatively to erythrocyte CR1 receptors; opsonized Leishmania amastigotes also bind to erythrocytes. Progression of infection implies promastigote transfer from erythrocytes to acceptor blood leukocytes. After 10 min of ex vivo infection, 25% of all leukocytes contain intracellular parasites, indicating that blood cells are the early targets for the invading promastigotes. We propose that adaptation to the immune adherence mechanism aids Leishmania survival, promoting rapid promastigote phagocytosis by leukocytes. This facilitates host colonization and may represent the parasite's earliest survival strategy. In light of this mechanism, it is unlikely that infection-blocking vaccines can be developed.  相似文献   

6.
The phosphotyrosine-binding (PTB) domain of Numb, a protein involved in asymmetric cell division, has recently been shown to bind to the adapter protein Lnx through an LDNPAY sequence, to the Numb-associated kinase (Nak) through a sequence that does not contain an NPXY motif and to GP(p)Y-containing peptides obtained from library screening. We show here that these diverse peptide sequences bind with comparable affinities to the Numb PTB domain at a common binding site on the surface of the protein. The NMR structure of the Numb PTB domain in complex with a GPpY-containing peptide reveals a novel mechanism of binding with the peptide in a helical turn that does not hydrogen bond to the PTB domain beta-sheet. These results suggest that PTB domains can potentially have multiple modes of peptide recognition and provide a structural basis from which the multiple functions of the Numb PTB domain during asymmetric cell division could arise.  相似文献   

7.
The anti-hIGF-I monoclonal antibody, alpha-sm1.2, was found to have substantial crossreactivity with human and rat IGF-II, but recognized rat IGF-I only when this ligand was present at very high concentration. (E50 for hIGF-I approximately 3.5 ng/tube vs. approximately 12,000 ng/tube for rat IGF-I). In the context of previous studies to define the epitope(s) of alpha-sm1.2, these findings point to the critical importance of aspartic acid at residue 20 in the B domain in determining the species and ligand specificity of this antibody. Previous studies using this antibody in rodent tissues may require reinterpretation in the light of these findings.  相似文献   

8.
Antifreeze proteins (AFPs) have the unique ability to adsorb to ice and inhibit its growth. Many organisms ranging from fish to bacteria use AFPs to retard freezing or lessen the damage incurred upon freezing and thawing. The ice-binding mechanism of the long linear alpha-helical type I AFPs has been attributed to their regularly spaced polar residues matching the ice lattice along a pyramidal plane. In contrast, it is not known how globular antifreeze proteins such as type III AFP that lack repeating ice-binding residues bind to ice. Here we report the 1.25 A crystal structure of recombinant type III AFP (QAE isoform) from eel pout (Macrozoarces americanus), which reveals a remarkably flat amphipathic ice-binding site where five hydrogen-bonding atoms match two ranks of oxygens on the [1010] ice prism plane in the <0001> direction, giving high ice-binding affinity and specificity. This binding site, substantiated by the structures and properties of several ice-binding site mutants, suggests that the AFP occupies a niche in the ice surface in which it covers the basal plane while binding to the prism face.  相似文献   

9.
The 3D solution structure of the GCC-box binding domain of a protein from Arabidopsis thaliana in complex with its target DNA fragment has been determined by heteronuclear multidimensional NMR in combination with simulated annealing and restrained molecular dynamic calculation. The domain consists of a three-stranded anti-parallel beta-sheet and an alpha-helix packed approximately parallel to the beta-sheet. Arginine and tryptophan residues in the beta-sheet are identified to contact eight of the nine consecutive base pairs in the major groove, and at the same time bind to the sugar phosphate backbones. The target DNA bends slightly at the central CG step, thereby allowing the DNA to follow the curvature of the beta-sheet.  相似文献   

10.
11.
A nuclear mutant of maize, tha1, which exhibited defects in the translocation of proteins across the thylakoid membrane, was described previously. A transposon insertion at the tha1 locus facilitated the cloning of portions of the tha1 gene. Strong sequence similarity with secA genes from bacteria, pea and spinach indicates that tha1 encodes a SecA homologue (cp-SecA). The tha1-ref allele is either null or nearly so, in that tha1 mRNA is undetectable in mutant leaves and cp-SecA accumulation is reduced > or = 40-fold. These results, in conjunction with the mutant phenotype described previously, demonstrate that cp-SecA functions in vivo to facilitate the translocation of OEC33, PSI-F and plastocyanin but does not function in the translocation of OEC23 and OEC16. Our results confirm predictions for cp-SecA function made from the results of in vitro experiments and establish several new functions for cp-SecA, including roles in the targeting of a chloroplast-encoded protein, cytochrome f, and in protein targeting in the etioplast, a nonphotosynthetic plastid type. Our finding that the accumulation of properly targeted plastocyanin and cytochrome f in tha1-ref thylakoid membranes is reduced only a few-fold despite the near or complete absence of cp-SecA suggests that cp-SecA facilitates but is not essential in vivo for their translocation across the membrane.  相似文献   

12.
Nimesulide 1 is a novel nonsteroidal antiinflammatory drug which inhibits the enzyme cyclooxygenase 2 (COX-2) more selectively than cyclooxygenase 1 (COX-1). Molecular modelling studies have been carried out on complexes of 1 with COX-1 and with mutants of COX-1 simulating COX-2. These indicate that the mutations I523V and S516A largely contribute to the selectivity. A comparative study with SC-558 2 has also been performed.  相似文献   

13.
In a situation so far unique among neurotransmitter receptors, glutamate receptors share amino acid sequence similarities with the bacterial periplasmic binding proteins (PBPs). On the basis of the primary structure similarity of two bacterial periplasmic proteins (lysine/arginine/ornithine- and phosphate-binding proteins) with the chick cerebellar kainate-binding protein (KBP), a member of the ionotropic glutamate receptor family, we have generated a three-dimensional model structure of the KBP extracellular domain. By an interplay between homology modeling and site-directed mutagenesis, we have investigated the kainate binding properties of 55 different mutants (corresponding to 43 positions) and studied the interactions of some of these mutants with various glutamatergic ligands. As a result, we present here the subsets of amino acids accounting for the binding free energies and specificities of KBP for kainate, glutamate, and CNQX and propose a three-dimensional model, at the microarchitectural level, of the glutamatergic binding domain.  相似文献   

14.
Prostaglandins and glucocorticoids are potent mediators of inflammation. Non-steroidal anti-inflammatory drugs (NSAIDs) exert their effects by inhibition of prostaglandin production. The pharmacological target of NSAIDs is cyclooxygenase (COX, also known as PGH synthase), which catalyses the first committed step in arachidonic-acid metabolism. Two isoforms of the membrane protein COX are known: COX-1, which is constitutively expressed in most tissues, is responsible for the physiological production of prostaglandins; and COX-2, which is induced by cytokines, mitogens and endotoxins in inflammatory cells, is responsible for the elevated production of prostaglandins during inflammation. The structure of ovine COX-1 complexed with several NSAIDs has been determined. Here we report the structures of unliganded murine COX-2 and complexes with flurbiprofen, indomethacin and SC-558, a selective COX-2 inhibitor, determined at 3.0 to 2.5 A resolution. These structures explain the structural basis for the selective inhibition of COX-2, and demonstrate some of the conformational changes associated with time-dependent inhibition.  相似文献   

15.
We report the x-ray crystal structure of the methylesterase CheB, a phosphorylation-activated response regulator involved in reversible modification of bacterial chemotaxis receptors. Methylesterase CheB and methyltransferase CheR modulate signaling output of the chemotaxis receptors by controlling the level of receptor methylation. The structure of CheB, which consists of an N-terminal regulatory domain and a C-terminal catalytic domain joined by a linker, was solved by molecular replacement methods using independent search models for the two domains. In unphosphorylated CheB, the N-terminal domain packs against the active site of the C-terminal domain and thus inhibits methylesterase activity by directly restricting access to the active site. We propose that phosphorylation of CheB induces a conformational change in the regulatory domain that disrupts the domain interface, resulting in a repositioning of the domains and allowing access to the active site. Structural similarity between the two companion receptor modification enzymes, CheB and CheR, suggests an evolutionary and/or functional relationship. Specifically, the phosphorylated N-terminal domain of CheB may facilitate interaction with the receptors, similar to the postulated role of the N-terminal domain of CheR. Examination of surfaces in the N-terminal regulatory domain of CheB suggests that despite a common fold throughout the response regulator family, surfaces used for protein-protein interactions differ significantly. Comparison between CheB and other response regulators indicates that analogous surfaces are used for different functions and conversely, similar functions are mediated by different molecular surfaces.  相似文献   

16.
Vesico-ureteral reflux (VUR) is a frequent condition, but in most instances, the precise cause is unknown. We here review the evidence of a genetic aetiology of VUR, inherited as an autosomal dominant trait, with variable expression. We discuss the possible pathogenetic relationship between VUR and other types of uropathies and possible strategies towards the identification of genes underlying VUR are presented. The isolation of the gene(s) responsible for uropathies will not only lead to a better insight into the embryology of the urological system, the pathogenesis of uropathies, but also to a renewed interest from clinicians in congenital uropathies.  相似文献   

17.
The RNP domain is a very common eukaryotic protein domain involved in recognition of a wide range of RNA structures and sequences. Two structures of human U1A in complex with distinct RNA substrates have revealed important aspects of RNP-RNA recognition, but have also raised intriguing questions concerning the origin of binding specificity. The beta-sheet of the domain provides an extensive RNA-binding platform for packing aromatic RNA bases and hydrophobic protein side chains. However, many interactions between functional groups on the single-stranded nucleotides and residues on the beta-sheet surface are potentially common to RNP proteins with diverse specificity and therefore make only limited contribution to molecular discrimination. The refined structure of the U1A complex with the RNA polyadenylation inhibition element reported here clarifies the role of the RNP domain principal specificity determinants (the variable loops) in molecular recognition. The most variable region of RNP proteins, loop 3, plays a crucial role in defining the global geometry of the intermolecular interface. Electrostatic interactions with the RNA phosphodiester backbone involve protein side chains that are unique to U1A and are likely to be important for discrimination. This analysis provides a novel picture of RNA-protein recognition, much closer to our current understanding of protein-protein recognition than that of DNA-protein recognition.  相似文献   

18.
The cellular targets for estramustine, an antitumor drug used in the treatment of hormone-refractory prostate cancer, are believed to be the spindle microtubules responsible for chromosome separation at mitosis. Estramustine only weakly inhibits polymerization of purified tubulin into microtubules by binding to tubulin (Kd, approximately 30 microM) at a site distinct from the colchicine or the vinblastine binding sites. However, by video microscopy, we find that estramustine strongly stabilizes growing and shortening dynamics at plus ends of bovine brain microtubules devoid of microtubule-associated proteins at concentrations substantially below those required to inhibit polymerization of the microtubules. Estramustine strongly reduced the rate and extent both of shortening and growing, increased the percentage of time the microtubules spent in an attenuated state, neither growing nor shortening detectably, and reduced the overall dynamicity of the microtubules. Significantly, the combined suppressive effects of vinblastine and estramustine on the rate and extent of shortening and dynamicity were additive. Thus, like the antimitotic mechanisms of action of the antitumor drugs vinblastine and taxol, the antimitotic mechanism of action of estramustine may be due to kinetic stabilization of spindle microtubule dynamics. The results may explain the mechanistic basis for the benefit derived from combined use of estramustine with vinblastine or taxol, two other drugs that target microtubules, in the treatment of hormone-refractory prostate cancer.  相似文献   

19.
The firefly luciferase enzyme from Photinus pyralis is probably the best-characterized model system for studying anesthetic-protein interactions. It binds a diverse range of general anesthetics over a large potency range, displays a sensitivity to anesthetics that is very similar to that found in animals, and has an anesthetic sensitivity that can be modulated by one of its substrates (ATP). In this paper we describe the properties of bromoform acting as a general anesthetic (in Rana temporaria tadpoles) and as an inhibitor of the firefly luciferase enzyme at high and low ATP concentrations. In addition, we describe the crystal structure of the low-ATP form of the luciferase enzyme in the presence of bromoform at 2.2-A resolution. These results provide a structural basis for understanding the anesthetic inhibition of the enzyme, as well as an explanation for the ATP modulation of its anesthetic sensitivity.  相似文献   

20.
Heregulin-mediated activation of particular erbB receptor combinations was used as a model system to investigate the interaction of erbB3 and erbB4 with the adaptor protein growth factor receptor-bound (Grb)7. In human breast cancer cell lines, co-immunoprecipitation of Grb7 with both receptors was detected upon heregulin stimulation. This association was direct and mediated by the Grb7 Src homology (SH)2 domain. Co-expression of erbB2 with erbB3 point mutants was used to map Grb7 binding sites. This demonstrated that tyrosine 1180 and 1243 represent the major and minor sites of Grb7 interaction, respectively. Although these recognition sequences possess an Asn residue at +2 relative to the phosphotyrosine and therefore represent potential Grb2 binding sites, phosphopeptide competition and "pull-down" experiments demonstrated that they interact preferentially with the Grb7 versus the Grb2 SH2 domain. Substitution analysis indicated that an Arg residue at +3 could act as a selectivity determinant, but the effect was context-dependent. Consequently, the Grb2 and Grb7 SH2 domains possess overlapping, but distinct, specificities. These studies therefore identify Grb7 as an in vivo target of erbB3 and erbB4 and provide an underlying mechanism for the ability of erbB3 to recruit Grb7 and not Grb2, a property unique among erbB receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号