首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adsorption of micro-organisms at the gas/liquid interface causes both an increase in the oxygen respiration rate and a decrease in the oxygen diffusion coefficient near the interface. An increase in the oxygen consumption rate increases the oxygen mass transfer rate into the bacterial broth but a decreased oxygen diffusion coefficient reduces the mass transfer rate. These two factors must be taken into account when enhancement factors are calculated.  相似文献   

2.
Absorption of gases into a liquid is essentially important for two- or three-phase reactions, because the diffusion of a sparingly soluble gas, like oxygen, across a gas-liquid interface generally limits the reaction rates. Using a third, dispersed phase, the mass transfer rate could be significantly increased. The question arises how the absorption rate can be described in the presence of very fine, nanometer size particles or droplets. Its mathematical model should take into account the specific properties of the nanoparticles, e.g. the Brownian motion of particles, its effect on the diffusion of the bulk phase molecules, the mass transfer rate into the nanoparticles, its dependency on the particle size, etc. The mass transfer rate of oxygen, in the presence of nanometer size, organic droplets, has been investigated both experimentally, using organic submicron n-hexadecane droplets, and theoretically. The effect of the Brownian motion of the nanoparticles as well as its effect on the diffusivity in the nanofluid has been discussed. Accordingly, the enhanced diffusion coefficient, due to the convective motion of the continuous liquid phase induced by the moving particles, has been predicted and its effect on the mass transfer enhancement has been calculated using both homogeneous and heterogeneous mathematical models. The predicted data were compared to the measured ones.  相似文献   

3.
Mass transfer coefficients were measured for the liquid phase for gas absorption into a turbulent liquid flowing down a long wetted-wall column. Helium, hydrogen, oxygen and carbon dioxide were absorbed into distilled water over a Reynolds number range of 1300–8300. The results indicate that the liquid phase mass transfer coefficient is proportional to the molecular diffusion coefficient raised to the 0·54 power. The results are interpreted in terms of an eddy diffusivity model and indicate that the eddy diffusivity increases as the square of the distance from the interface.  相似文献   

4.
Multiphase transport models of food processes require surface heat and mass transfer coefficients as boundary conditions that are traditionally assumed. A conjugate heat and mass transfer model is solved for simple microwave heating of food as a porous medium (from which vapor blows out) with air flow over it, such that there is no need to provide the boundary conditions at the food–air interface. Surface fluxes due to diffusion and flow (blowing) are computed for both vapor and heat from which transfer coefficients are obtained. As evaporation increases with heating, vapor flux due to pressure-driven flow increases but remains small compared with diffusive flux. Vapor accumulation at the interface increases the diffusive flux, leading to an 8% increase in mass transfer coefficient. Heat transfer at the interface occurs through both conduction and flow, and the heat transfer coefficient shows a slight decrease (10%) as blowing increases with heating. The rate of heating has minimal effect on the transfer coefficients.  相似文献   

5.
This study describes a technique for estimating biokinetic and mass transfer parameters for biofilm processes in wastewater treatment. The reactor used consisted of a column divided into separate units packed with expanded clay pellets. Samples were taken at the exit of each unit. Oxygen mass transfer and oxygen consumption rate were determined. The system was operated with cocurrent upflows of air and industrial wastewater. A mathematical approach was developed to estimate biokinetic parameters such as the maximal oxygen removal rate, saturation constant and internal diffusion coefficient. © 1998 SCI.  相似文献   

6.
研究了人工肝生物反应器的结构特点,并在对反应器内部液体流动与气液传质规律进行分析的基础上,结合反应器的实际需要,建立了基于一维轴向扩散模型的人工肝专用生物反应器溶解氧浓度动态分布的数学机理模型. 利用有限差分方法对模型离散化求解,得到了流动速度、氧传质系数及细胞耗氧速率对反应器内部溶解氧浓度分布的影响规律. 通过对模型数值解的分析得到了特定条件下反应器内的优化参数为液体流速0.55 mm/s,传质系数0.31 s-1,扩散系数0.02 mm2/s. 最后,通过仿真数据与实测实验的对比验证了该模型的正确性,其平均误差在±5%以内. 本模型的建立在理论上验证了该专用生物反应器可以提供稳定且均匀的溶解氧浓度分布,同时也为下一代新型反应器的优化设计提供了参考数据和理论依据.  相似文献   

7.
We report new experimental data on concentration-dependent molecular diffusion coefficient of ethane in toluene at temperatures ranging from 21 to 125°C and pressures up to 4.14 MPa. An analytical model has also been developed for estimation of the diffusion coefficient utilizing the experimental data of the interface velocity as a result of swelling and the rate of gas dissolution in the liquid phase. It is shown that the diffusion coefficient of ethane in toluene is dependent on the initial mass fraction of the gaseous component in the liquid. In addition, the effect of concentration dependency of the molecular diffusion coefficient on diffusive mass flux is quantified. The results reveal that the assumption of a constant diffusion coefficient introduces ~10–60% error in calculation of diffusional mass transfer flux. The developed methodology finds application in estimation of the concentration-dependent molecular diffusion coefficient of gases in liquids.  相似文献   

8.
The influence of molecular diffusion on liquid—liquid mass transfer in a stirred transfer cell has been found by measuring the rates transfer of helium and iso-butane from water to toluene and dekalin. These solutes have very different diffusion coefficients, their presence does not alter the physical properties of the liquids and, because their equilibrium distributions strongly favour the organic phases, the water phase mass transfer coefficient could be determined and was found to depend on the square root of the diffusion coefficient.The results are compared with the predictions of a model for liquid—liquid mass transfer under turbulent conditions, based on the approach of an eddy to the interface being restrained by interfacial tension and gravitational forces and taking into account eddy pressure fluctuations in both phases. This model provides a correlation for these results, as well as water phase mass transfer coefficients for the transfer of iso-butane from water to n-octanol, and previous stirred transfer cell results.  相似文献   

9.
王成龙  张金利  张敏卿 《化工进展》2018,37(11):4150-4161
氧传质系数是气液搅拌反应器设计的关键参数,研究新型搅拌桨的氧传质性能对气液两相搅拌反应器的强化有着重要的意义。本文实验研究了气体分布器、搅拌转速、气量对氧传质系数、搅拌功耗及气含率的影响,结果表明,氧传质系数随搅拌转速和气量的增加而增加;并建立了氧传质系数与搅拌功耗和表观气速的经验公式,为进一步放大应用提供了基础。采用欧拉-欧拉多相流模型及群体平衡模型对半弧面新型斜叶桨进行了计算流体力学(CFD)数值模拟研究,模拟研究了不同结构、搅拌转速、气量下的流体力学性能和氧传质系数,模拟计算结果与实验值的相对偏差在20%以内;这为研究这一半弧面新型斜叶桨提供了一种可靠的数值模拟方法;优化了半弧面新型斜叶桨的结构,提高了搅拌釜的氧传质效率。  相似文献   

10.
红霉素在大孔树脂上的吸附动力学研究   总被引:2,自引:2,他引:0  
采用液膜及孔内扩散模型,模拟不同温度和不同红霉素(EM)初始浓度条件下,大孔吸附树脂HZ816及XAD16吸附红霉素的动态吸附曲线,并获得液膜传质及孔内扩散系数;考察了温度及溶质浓度对红霉素在两种树脂中吸附动力学的影响.结果表明,在实验范围内,红霉素在HZ816和XAD16两种树脂上的吸附平衡数据满足Langmuir吸附等温线方程,液膜及孔内扩散模型能较好地描述红霉素在两种树脂上的吸附动力学,同时,模型拟合得到的液膜传质系数随着温度的升高而增大,随着初始浓度的增大而增大,孔内扩散系数随着温度的升高而增大,随着初始浓度的增大而减小.  相似文献   

11.
The mass transfer is investigated for physical absorption of oxygen in water for varying interfacial areas as well as the influence of suspended glass beads and activated carbon. Under higher rotational speed, the volumetric mass transfer coefficient as well as the mass transfer coefficient values increase for all specific interfacial areas due to the changes in hydrodynamics. The configuration of the free gas‐liquid interface is of minor relevance. In the presence of glass beads, the mass transfer is reduced compared to physical adsorption, whereas an enhancement of the mass transfer can be observed in the presence of activated carbon. This indicates that the mobility of the gas‐liquid interface is the determining factor. The renewal of the fluid elements is increased by adsorption of surfactants on the surface of activated carbon, leading to an improved mass transport.  相似文献   

12.
Mass transfer plays an important role in influencing the efficiency of miscible displacements in solvent‐based processes in enhanced oil recovery. The mass transfer rate because of the pure molecular diffusion is very slow. However, this process can be greatly enhanced by the appearance of frontal instabilities called viscous fingering mechanisms, which are beneficial for improving the mixing and mass transfer between the injected solvent and oil. Instead of a piston‐like displacement, the interface between solvent and oil is very convoluted with intricate finger‐like patterns of the less viscous solvent intruding into the highly viscous oil. This intrusion significantly increases the surface area of contact of the two fluids and leads to more efficient mass transfer and mixing. Experimental measurements on the diffusion coefficients of two miscible fluids indicate that, instead of a constant diffusion coefficient (CDC), a concentration‐dependent diffusion coefficient (CDDC) is more realistic. In the present study, a CDDC relation in which the diffusion coefficient is exponentially proportional to concentration is adopted. Its effect on the development of frontal instabilities is examined through highly accurate nonlinear numerical simulations. The differences between the CDDC case and the widely assumed CDC case are discussed. Furthermore, the enhancement of frontal instabilities on mass transfer when the CDDC is considered is investigated at various mobility ratios and Peclet numbers. The special characteristics for the CDDC case indicate its important role in miscible displacements. Eventually, the relation of breakthrough time to parameters is correlated to accurately predict the breakthrough time in any CDDC scenario.  相似文献   

13.
A unified conjugate mass transfer model of VOC emission   总被引:1,自引:0,他引:1  
This paper develops a unified conjugate mass transfer model for VOC (Volatile Organic Compound) emission, which implies conjugate boundary condition for mass transfer at the material-air interface. Thus, no special treatment is needed at the material-air interface and numerical methods for conjugate heat transfer problem can be applied directly. The material-air partition coefficient has been taken into account and its effect is the same as specific heat in the energy equation. The equivalent diffusion coefficient in the material KmaDm instead of Dm characterizes the rate of mass transfer. The ratioK ma D m /D a indicates whether VOC emission is controlled by the internal diffusion or not. The equivalent air-phase initial concentration C0/Kma determines the order of maximum concentration in the air. VOC emission contains two stages: the initial stage and the pseudo-steady stage when the emission rate nearly equals mass rate through the outlet of the air. Diffusion coefficient of VOC in the material has a significant effect on VOC emission in the two stages. The effect of partition coefficient on VOC emission depends on the value of KmaDm/Da.  相似文献   

14.
Average gas holdup and gas-to-liquid mass transfer in three-phase fluidized beds with non-Newtonian fluids were studied. The effects of liquid property, gas distributor type and magnetic field intensity on mass transfer coefficient and overall gas holdup were examined. The volumetric gas-to-liquid mass transfer coefficient was determined by fitting the oxygen concentration profile data across the bed to the axial dispersion model. The average gas holdup and mass transfer coefficient were all correlated with operating parameters including gas velocity and effective viscosity.Experimental results showed that a three-fold increase in mass transfer coefficient and a two-fold increase in average gas holdup were observed with properly designed liquid property and gas distributor. A modified process was developed to highly elevate the volumetric gas-to-liquid mass transfer rate. The bubble coalescing property of three-phase fluidized beds with small particles is eliminated, and its application to biotechnology and enzyme-catalyzed processes with high gas-to-liquid mass transfer rate could be achieved.  相似文献   

15.
快速变压吸附制氧动态传质系数模拟分析   总被引:5,自引:4,他引:1       下载免费PDF全文
研究快速变压吸附制氧过程中的传质过程,结合实验数据对全局动态传质系数与常数传质系数进行对比模拟分析,并考察各传质阻力对传质效果的影响。结果表明:基于轴向、膜扩散和孔扩散估算的动态传质系数是有效的。膜阻力是主要阻力,其次是轴向扩散阻力,大孔扩散阻力较小,微孔扩散阻力可忽略。在快速变压吸附中,由于气速和温度变化较快,传质系数也会有较大变化,总体趋势是传质系数随着温度和气速的升高而升高。采用恒定传质系数无法准确描述吸附塔内各个时间点、空间点上的传质行为,根据各节点状态计算出的动态估算传质系数能够与吸附塔内的行为有较好的吻合度,模型具有较高的可信性。  相似文献   

16.
采用伯胺N1923萃取剂在微通道中研究V(V)的液-液流型和萃取传质动力学,以15vol% N1923作为连续相、钒氧酸根水溶液作为分散相,研究不同流速下两不混溶相的流型变化规律及两相停留时间和微通道管径作为流速的函数对传质的影响。随两相流速增大,段塞流长度和比界面面积基本不变,且两相流体由Raydrop微通道流入外接毛细管微通道时由于微通道的扩张会改变两相流动方式,使同一实验条件下在微通道中同时出现多种流型,与此同时两相流速和总体积传质系数(kLa)呈正相关,表明流型在本研究体系中对传质的影响可忽略。在相同管径通道内,停留时间与总体积传质系数呈负相关,表明在两相接触通道入口处发生了显著传质。在相同的两相混合速度和相比下,254 μm的管径传质效果是750 μm的9倍,表明小管径内传质效果更加,循环强度更大。最后将实验总体积传质系数结果与总体积传质系数的经验式进行了关联,有望为实现将微通道放大的绿色冶金技术提供理论基础。  相似文献   

17.
林冠屹  朱春英  付涛涛  马友光 《化工学报》2018,69(11):4675-4682
研究了T形微通道内N-甲基二乙醇胺(MDEA)和单乙醇胺(MEA)混合水溶液吸收CO2的传质过程。考察了弹状流型下气液两相流量、MEA和MDEA浓度对液侧传质系数kL和体积传质系数kLa的影响。液侧传质系数和体积传质系数均会随着MEA浓度的升高而升高。与MEA相比,MDEA浓度的提高对传质影响较小。传质系数会随着液体流量的增大而增大,但气体流量的变化对其影响较小。体积传质系数随液体流量的增大而增大,但随气体流量的增大先增大,之后趋于稳定。考虑到化学反应对传质的强化作用,引入了Hatta数,提出了一个新的体积传质系数预测式,预测效果良好。  相似文献   

18.
针对强制气流作用下溶液的蒸发过程,在分析气液相间力学特性的基础上,根据Levich涡流衰减理论和边界层理论,将气流流动状态与相间传质结合,研究了湍流气流横掠液面过程中气液相间的传质变化规律,分析了雷诺数、气流流道结构及普朗特混合长度对传质的影响,得到了气液相间的湍流质扩散系数的变化规律,湍流气流横掠液面条件下的对流传质准则数Sh=0.221Sc1/3Rex1/2. 结果表明,湍流扩散系数、传质系数与气流的流动状态密切相关,气流流道结构对气液相间的传质有重要影响.  相似文献   

19.
大孔吸附树脂HZ816对红霉素的固定床吸附过程研究   总被引:1,自引:1,他引:0  
在上柱质量浓度为2.31—6.56 mg/mL、流量为14.33—42.80 mL/h的范围内研究了固定床吸附柱中大孔吸附树脂HZ816对红霉素的动态吸附过程,考察了原料液质量浓度和进口流量等操作参数对穿透曲线的影响。并采用基于液膜及孔内扩散模型的动力学模型,同时考虑吸附树脂颗粒内外扩散阻力及轴向扩散的影响,研究了固定床上红霉素在大孔吸附树脂中的吸附动力学,并从穿透曲线回归得到液膜传质系数孔内扩散系数。结果表明,在实验范围内,该模型能较好地描述红霉素在HZ816树脂上的吸附过程,由模型拟合得到的液膜传质系数随着原料液质量浓度减小而增大,随着流量升高而增大;孔内扩散系数随着原料液质量浓度增大而减小,随着流量升高而减小。为采用大孔吸附树脂HZ816吸附技术分离纯化红霉素工艺提供了实验和理论基础。  相似文献   

20.
Coupled heat and mass transfer in short-term contact of the moist material and the heating surface (the physical model of drying with agitation) is examined. Technological characteristics of the drying process: heating rate and drying rate, heat transfer coefficient, etc. have been determined based on solutions of the diffusion and diffusion-filtration heat and mass transfer. The usage of non-field method of determination of mass and heat fluxes on the phase interface allows calculation of the drying equipment efficiency without preliminary determination of the fields of required quantities. The results may be used for estimation of the influence of drying conditions and material properties on the moisture removal process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号