首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Repeated applications of elevated K+ (100 mM) in artificial cerebrospinal fluid (CSF) were used to evoke an efflux of acetylcholine (ACh) from the in vivo rat cerebral cortex using a cortical cup technique. Elevated K+ reproducibly increased the levels of ACh in cup superfusates by a factor of 3-5-fold above basal levels (27.2 +/- 9.7 nM). The adenosine A1 receptor agonist N6-cyclopentyl adenosine (CPA), at a concentration of 10(-8) M, depressed basal, but not K(+)-evoked ACh efflux. 10(-6) M CPA increased basal, but did not alter K(+)-evoked, ACh efflux. The A2 selective agonist CGS 21680 did not alter either basal, or K(+)-evoked, ACh efflux. The inhibitory effects of 10(-8) M CPA on ACh efflux would be consistent with the presence of adenosine A1 receptors on cholinergic nerve terminals in the cerebral cortex. At a higher concentration (10(-6) M) CPA elevated basal release, possibly by activating low affinity A2 receptors. The failure of CGS 21680 (10(-8) M) to alter basal ACh release suggests an absence of high affinity A2 receptors in these terminals. Whereas elevated K+ in cup superfusates consistently enhanced ACh efflux from the cerebral cortex, this increase was not affected by either CPA or CGS 21680. High K(+)-evoked release of cerebral cortical ACh may be an inappropriate model for the study of adenosine's actions on neurotransmitter release.  相似文献   

2.
3.
Comparative investigations were performed to study the effect of endogenous and exogenous N-nitrosodiethylamine on the dynamics of content variations of oxidized cytochrome P-450 and its isoforms in the monooxygenase system of rat liver. The variations of cytochrome P-450 contents in both cases were demonstrated to be of the same character correlating with hepatocarcinogenesis stages. Higher quantities of oxidized cytochrome P-450 and its isoforms with MM 52, 53, and 56 kDa in the rat liver when acted upon by NDEA precursors are seen as the precondition of enhancing the monooxygenase reaction of NDEA bioactivation and, as a result, of the carcinogenic effects. Ascorbic acid is assumed to block the synthesis of NDEA from its precursors giving use to a compound whose metabolism does not influence the activity of the monooxygenase system of liver cells.  相似文献   

4.
The chimeric peptide galparan (galanin(1-13)-mastoparan) induced the in vivo release of acetylcholine in the frontal cortex of rats when injected intracerebroventricularly, i.c.v. The ACh-releasing effects of galparan are reversible, dose-dependent, and not exerted at galanin receptors or at sites where mastoparan acts. Pertussis toxin pretreatment (i.c.v.) of the rats for 96 h prior to injection of galparan or of mastoparan completely prevented the ACh-releasing effects of both galparan and mastoparan. It appears that galparan acts at a novel site in the release of ACh in the cerebral cortex in vivo.  相似文献   

5.
Investigation of a human T-lymphotropic virus type II (HTLV-II) infection in a female Australian blood donor identified a human bite as the likely mode of transmission, confirmed by nucleotide sequencing of the proviral tax/rex from both donor and contact. We believe this to be the first report of the transmission of an HTLV by a human bite.  相似文献   

6.
The effects of delta9-tetrahydrocannabinol (delta9-THC), the major psychoactive compound of marijuana, and cannabidiol (CBD), a non-psychoactive component, on the acetylcholine (ACh) concentration and the turnover rate of ACh (TRACh) have been studied in various regions of the rat brain. Neither delta9-THC doses from 0.2 to 10 mg/kg nor CBD (10 OR 20 MG/KG) alter the ACh concentration in the brain areas examined 30 min, after the intravenous injection. However, delta9-THC (doses from 0.2 to 10 mg/kg) causes a marked dose-related decrease in the TRACh in hippocampus whereas CBD is without effect in this brain region even when 20 mg/kg is given. Furthermore, high doses of delta9-THC (5 mg/kg) and CBD (20 mg/kg) that produce a significant decrease in the TRACh of striatum fail to change the TRACh in parietal cortex. The low doses of delta9-THC required to reduce hippocampal TRACh suggest that an action on these cholinergic mechanisms may play a role in the psychotomimetic activity of delta9-THC.  相似文献   

7.
Several single components of mining waste (arsenic, manganese, lead, cadmium) to which humans are exposed at the mining area of Villa de la Paz, Mexico, are known to provoke alterations of striatal dopaminergic parameters. In this study we used an animal model to examine neurochemical changes resulting from exposure to a metal mixture. We used microdialysis to compare in vivo dopamine release from adult rats subchronically exposed to a mining waste by oral route with those from a control group and from a sodium arsenite group (25 mg/kg/day). We found that arsenic and manganese do accumulate in rat brain after 2 weeks of oral exposure. The mining waste group showed significantly decreased basal levels of dihydroxyphenylacetic acid (DOPAC; 66.7 +/- 7.53 pg/ microl) when compared to a control group (113.7 +/- 14.3 pg/ microl). Although basal dopamine release rates were comparable among groups, when the system was challenged with a long-standing depolarization through high-potassium perfusion, animals exposed to mining waste were not able to sustain an increased dopamine release in response to depolarization (mining waste group 5.5 +/- 0.5 pg/ microl versus control group 21.7 +/- 5.8 pg/ microl). Also, DOPAC and homovanillic acid levels were significantly lower in exposed animals than in controls during stimulation with high potassium. The arsenite group showed a similar tendency to that from the mining waste group. In vivo microdialysis provides relevant data about the effects of a chemical mixture. Our results indicate that this mining waste may represent a health risk for the exposed population.  相似文献   

8.
9.
Slices from rat hippocampus, striatum or cortex were incubated with l mum [3H] choline and following 75 min superfusion with Krebs solution the efflux of radioactivity was measured. The slices were stimulated either electrically (1 Hz) or with 25 mM potassium and the rate constant of the evoked release and the size of the releasable pool were estimated. The spontaneous efflux of radioactivity and the releasable pool but not the rate of evoked release correlated with the reported endogenous ACh content of the 3 areas. Raised potassium released radioactivity at a lower rate but from a larger pool than electrical stimulation from all 3 areas. In all 3 areas atropine alone potentiated while physostigmine, oxotremorine and carbamylcholine decreased the rate of evoked release. This depression was fully antagonized by atropine. The drugs had no effect on the size of the releasable pool. Findings suggest that muscarinic receptors located on cholinergic axons or terminals have a physiological role in the autoregulation of ACh release from these 3 areas.  相似文献   

10.
[3H]Acetylcholine (ACh) release, malonaldehyde formation and 45calcium-uptake were measured in rat cerebral cortical nerve terminal that were exposed to various concentrations of ferrous and ascorbate ions. At a constant molar ratio of 25:1, ferrous:ascorbate, these ions increased malonaldehyde (MA) synthesis in a concentration-dependent manner. Treatment with these ions in the same ratio also induced a dose-related inhibition of the K(+)-depolarization-induced release of newly synthesized [3H]ACh. Combined exposure to Fe2+/ascorbate also reduced calcium ionophore A23187-induced [3H]ACh release. Neither ferrous nor ascorbate ions alone altered depolarization- or ionophore-induced [3H]ACh release over this concentration range. Depolarization- and A23187-induced 45calcium uptake were not affected by peroxidation, suggesting that membrane peroxidation influenced some process in the release-process subsequent to calcium influx in a manner similar to what is observed during aging.  相似文献   

11.
12.
In rats narcotized by urethan we investigated the effect of 2,4-dinitrophenol and ouabain with regard to the cortical release of acetylcholine stimulated by scopolamine and to the acetylcholine content of telencephalon changed in that way. Dinitrophenol increased the liberating effect of scopolamine. In the presence of dinitrophenol and scopolamine ouabain reduced acetylcholine synthesis resulting in an strong decrease of acetylcholine content on persistent diminished increase of acetylcholine release.  相似文献   

13.
Synaptosomes from normoxic and hypoxic rats were incubated aerobically in the presence and absence of veratridine. In the absence of veratridine, no significant difference was observed between the two types of preparation regarding either ATP/ADP ratio or 14CO2 or [14C]acetylcholine synthesis from D-[U-14C]glucose. However, in the presence of veratridine, significant reductions in the output of 14CO2 and [14C]acetylcholine by synaptosomes from hypoxic rats were apparent. It was concluded that irreversible metabolic lesions occur at the synapse as a result of hypoxia, which are apparent only when the metabolism of the preparation is accelerated to a level comparable with the maximal rate occurring in vivo. The presence of such lesions is further evidenced by the significant reductions in ATP/ADP ratio, 14CO2 output, and [14C]acetylcholine synthesis that occur in synaptosomes from hypoxic rats made anoxic in vitro and permitted to recover. Such decreases are not seen when synaptosomes from normoxic rats are similarly treated.  相似文献   

14.
Cerebral regional acetylcholine (ACh) levels and utilization were studied in vivo in thiamin deficient (TD), pair-fed asymptomatic (PFC) and ad libitum fed control (ALC) rats. ACh levels in the cortex, corpus striatum, midbrain, diencephalon and brainstem of TD rats were comparable to those observed in the control groups. However, ACh utilization was slightly to moderately (10-41%) decreased in cortex, midbrain, diencephalon and brainstem. The decrease was significantly different in the midbrain of TD rats as compared to PFC and ALC rats.  相似文献   

15.
16.
17.
The microdialysis technique was used to examine the effect of the neurotoxin domoate, an analog of glutamic acid, on striatal dopamine activity. Our results show that the intracerebral administration of different concentrations of domoate (100 and 500 microM) produced increases in the extracellular levels of dopamine associated to decreases in the extracellular levels of its metabolites dihydroxyphenylacetate and homovanillate from rat striatum. These changes seem to be related according to a time sequence, indicating a possible effect on the metabolism of dopamine. Changes were also observed in locomotor activity (cycling behavior, sniffing around and chewing) in rats during the domoate infusion. The physiological mechanism by which domoate increased dopamine release remains to be worked out.  相似文献   

18.
Salvage and de novo purine and pyrimidine nucleotide syntheses were studied in H9 (a human lymphoid cell line) and H9-AZT cells (chronically zidovudine-exposed H9 cells). H9-AZT cells incorporated 18% and 27% more hypoxanthine and uridine, respectively, than H9 cells. The incorporation of the formate and bicarbonate was similar in both cell lines. Purine and pyrimidine de novo synthesis was inhibited by hypoxanthine and uridine, respectively. Hypoxanthine and uridine salvage pathways, however, were not affected by formate or bicarbonate. Short-term AZT exposure of cells had no effect on nucleotide synthesis. Some of the problems encountered in the studies of purine and pyrimidine synthesis are also discussed.  相似文献   

19.
To clarify the relationship between presynaptic cholinergic dysfunction and postsynaptic cell death in the hippocampus, extracellular levels of acetylcholine (ACh) were assayed and CA1 pyramidal cells were histologically investigated in gerbils which had undergone 2, 5 and 10 min ischaemia. It was found that the KCl- and atropine-induced release of ACh, an index of the functioning cholinergic system at the presynaptic terminals, was significantly lower in the ischaemic groups than in control groups. The hippocampal CA1 pyramidal cell area of the 5 and 10 min ischaemic animals was also significantly decreased, but the 2 min ischaemia caused no cell damage. These findings indicate that the presynaptic terminals of the cholinergic neurone are vulnerable to ischaemic insult and that cholinergic dysfunction precedes postsynaptic CA1 pyramidal cell death in the hippocampus.  相似文献   

20.
Exogenous and endogenous glutamate has been shown to evoke dopamine (DA) release in the striatum using both in vitro and in vivo techniques. We hypothesized that stimulation of the prefrontal cortex (PFC) would phasically enhance striatal DA release via the glutamatergic corticostriatal pathway. To test this hypothesis, in vivo brain microdialysis was employed to measure extracellular concentrations of DA in the striatum during electrical stimulation of the PFC. Five rats were implanted with bilateral electrodes located in the medial PFC and dialysis probes in the dorsal striatum. Two days later the PFC of these awake, freely moving rats was stimulated first at 50 microA and then at 100 microA for 20 minutes at 2-hour intervals. Both currents significantly increased DA release. Extracellular DA rose rapidly during stimulation, peaked immediately afterward, and then slowly returned to baseline values. Dopamine reached 118% of baseline values with 50 microA stimulation and 138% with 100 microA stimulation. Histologic analysis using the fluorescent retrograde dye Fluoro Gold confirmed that cells projecting to the vicinity of the striatal dialysis probe originated in the vicinity of the PFC electrodes. These results provide direct evidence for phasic, excitatory modulation of striatal DA release by the PFC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号