首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
The doping effect of amorphous carbon (C) containing magnetic impurity in MgB2 bulk has been studied. Structural characterization by means of X-ray diffraction and the superconducting transition temperature, T c , measurement indicate that little C effectively enters the MgB2 structure. This should be due to the lower sintering temperature. The upper critical field, H c2, and irreversibility field, H irr, of samples show no systematic evolution with C doping. However, critical current density J c (H) performance is greatly improved with C doping at 4, 15, and 28 K, respectively. Corresponding to this case, scanning electron microscope (SEM) image indicates that the grain size in samples becomes very small and grain boundary is developing roundness with the increasing of C content. This should be intimately related with the increase of magnetic impurity along with C doping. The result is discussed.   相似文献   

2.
This paper presents a very simple way to synthesis MgB2 thick films with high critical current density in a magnetic field by ex-situ annealing precursor B films in air with excessive Mg in a sealed quartz tube. The films show a significant improvement of critical current density in a magnetic field compared to the high purity films annealed in vacuum, while its zero-resistance transition temperature T c zero and normal state resistivity still maintain about 38 K and 17 μΩcm. The results demonstrate MgB2 thick films have great potential applications in superconducting coated conductors.   相似文献   

3.
MgB2 superconductor has been synthesized using a simple technique at ambient pressure. The synthesis was carried out in helium atmosphere over a wide range of temperatures. Magnesium was employed in excess to the stoichiometry to prevent the decomposition of MgB2. Samples of MgB2 thus prepared have been almost free from MgO as compared to other methods. Resistivities of the samples are quite low with residual resistivity ratio (RRR) of around 3.T c (R = 0) is 38.2-38.5 K with ΔT C of 0.6–1.0 K. Comparative studies of various methods of low pressure synthesis have been presented.  相似文献   

4.
Chemical solution deposition is a promising technique for fabrication of high-temperature superconducting films and oxide buffer layers due to its reproducibility and low cost. In this work, Y2O3 buffer layers were prepared on (100) LaAlO3 substrates by mental organic deposition method using trifluoroacetate. The resulting Y2O3 films crystallized as a single phase at 900°C and showed a low degree ofc-axis orientation. The scanning electron micrography showed that the surface of the films was smooth with a uniform grain size of approximately 10 nm.  相似文献   

5.
Polycrystalline sample of Pb2Sb3LaTi5O18, a member of tungsten- bronze (TB family, was prepared using a high temperature solid- state reaction technique. XRD analysis indicated the formation of a single-phase orthorhombic structure. The dielectric studies revealed the diffuse phase transition and the transition temperature was found to be at 52° C. Impedance plots were used as tools to analyse the sample behaviour as a function of frequency. Cole-Cole plots showed Debye relaxation. The activation energy was estimated to be 0·634 eV from the temperature variation of d.c. conductivity. The nature of variation of d.c. conductivity with temperature suggested NTCR behaviour.  相似文献   

6.
Single domain GdBa2Cu7-δ (Gd123) bulk superconductors were fabricated in air by top-seeding melt-texture growth. Performance of the air-processed Gd123 was successfully enhanced by addition of both BaCO3 and BaCuO2−x , which suppress the formation of Gd1+x Ba2−x Cu3O7-δ solid solutions. The optimum doping amount ranges from 0.05 to 0.15, M BaCO3 and 0.05 to 0.1, M BaCuO2−x per molar Gd123. The distribution of the second phase particles was observed by scanning electron microscopy. A narrow band formed by Gd2BaCuO5 particle concentration appeared around the seeding zone in both ab plane and c-growth sector in Gd123 single grain. Trapped magnetic field density reached 0.67, T for sample with 24 mm in diameter and 8, mm in thickness and a high critical current density J c up to 91,200, A/cm2 was achieved at 77, K under self-field.  相似文献   

7.
The behavior of the superconducting transition temperature T c and that of the jump of electron heat capacity (C S C N )/C N of the compound MgB2 at T=T c with substitution of boron and magnesium atoms by other atoms from the periodic table of the elements, corresponding to introduction of additional electrons or holes in this compound are researched. The microscopic superconductivity theory in MgB2 systems in the magnetic field parallel to the crystallographic axis (H c) is built. The magnitude of the upper critical field H c2 is determined and its temperature dependence in two-band systems with different and identical topologies of Fermi surface cavities of the corresponding bands is studied. The obtained results and their comparisons with the experimental data demonstrate that all kinds of anomalies of the physical properties of the compound MgB2 are effectively described by the two-band model.  相似文献   

8.
The superconducting properties of iodine-intercalated high-temperature superconducting Bi2Sr2Ca2Cu3O10+x phase (Bi-2223) were systematically studied. It was found that for samples containing a significant amount of Bi2Sr2CaCu2O8+x , iodine intercalation results in the dramatic decrease of the inter-granular critical current density, as well as a significant decrease of the critical temperature (T c), the critical current density in the grains (J cg), and of the amount of Bi-2223. For samples with a large amount of Bi-2223, T c changes insignificantly, whereas J cg can even increase. We argue that the different behavior of the superconducting parameters is the result of various oxygen concentrations, and we explain the effect of iodine intercalation based on the parabolic dependence between T c and the number of holes per CuO2 layer. The H(T) curves (determined from the peak position in the loss signal of ac susceptibility) for intercalated samples deviate significantly from the quasi 2D-like behavior, pointing toward an enhancement of the 3D fluctuations of vortices. For the change in the values and dimensionality of the flux pinning in the process of the intercalation, we attempted a qualitative explanation based on the models proposed in literature.  相似文献   

9.
Synthesis and optical transmission of MgB2 thin films on optically transparent glass are reported. In the 400–1000 nm regime as deposited films show high metallic reflectivity and very little transmission. After deposition, the films were annealedex situ and rendered superconducting withT c of 38 K, approaching that of the bulk material. The reaction conditions where quite soft ∼ 10 min at 550°C. The optical absorption coefficient,α and photon energy,E followed a Tauc-type behavior, (αE)1/2=β T(EE g). The band gap (E g) was observed to peak at 2.5 eV; but, the slope parameterβ Tbehaved monotonically with reaction temperature. Our results indicate that an intermediate semiconducting phase is produced before the formation of the superconducting phase; also optical measurements provide valuable information in monitoring the synthesis of MgB2 from its metallic constituents. In addition these films have interesting optical properties that may be integrated into optoelectronics.  相似文献   

10.
The characterization and ethanol gas sensing properties of pure and doped ZnO thick films were investigated. Thick films of pure zinc oxide were prepared by the screen printing technique. Pure zinc oxide was almost insensitive to ethanol. Thick films of Al2O3 (1 wt%) doped ZnO were observed to be highly sensitive to ethanol vapours at 300°C. Aluminium oxide grains dispersed around ZnO grains would result into the barrier height among the grains. Upon exposure of ethanol vapours, the barrier height would decrease greatly leading to drastic increase in conductance. It is reported that the surface misfits, calcination temperature and operating temperature can affect the microstructure and gas sensing performance of the sensor. The efforts are, therefore, made to create surface misfits by doping Al2O3 into zinc oxide and to study the sensing performance. The quick response and fast recovery are the main features of this sensor. The effects of microstructure and additive concentration on the gas response, selectivity, response time and recovery time of the sensor in the presence of ethanol vapours were studied and discussed.  相似文献   

11.
Cadmium ferrite, CdFe2O4, is synthesized by urea combustion method followed by calcination at 900°C and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM) and selected area electron diffraction (SAED) techniques. The Li-storage and cycling behaviour are examined by galvanostatic cycling, cyclic voltammetry (CV) and impedance spectroscopy in the voltage range, 0·005–3·0 V vs Li at room temperature. CdFe2O4 shows a first cycle reversible capacity of 870 (± 10) mAhg−1 at 0·07C-rate, but the capacity degrades at 4 mAhg−1 per cycle and retains only 680 (± 10) mAhg−1 after 50 cycles. Heat-treated electrode of CdFe2O4 (300°C; 12 h, Ar) shows a significantly improved cycling performance under the above cycling conditions and a stable capacity of 810 (± 10) mAhg−1 corresponding to 8·7 moles of Li per mole of CdFe2O4 (vs theoretical, 9·0 moles of Li) is maintained up to 60 cycles, with a coulombic efficiency, 96–98%. Rate capability of heat-treated CdFe2O4 is also good: reversible capacities of 650 (± 10) and 450 (± 10) mAhg−1 at 0·5 C and 1·4 C (1 C = 840 mAg−1) are observed, respectively. The reasons for the improved cycling performance are discussed. From the CV data in 2–15 cycles, the average discharge potential is measured to be ∼0·9 V, whereas the charge potential is ∼2·1 V. Based on the galvanostatic and CV data, ex situ-XRD, -TEM and -SAED studies, a reaction mechanism is proposed. The impedance parameters as a function of voltage during the 1st cycle have been evaluated and interpreted. Dedicated to Prof. C N R Rao on his 75th birthday, and his contributions to science for the past 56 years  相似文献   

12.
Ga–As–Fe composite films prepared by molecular beam epitaxy at 600°C on GaAs(100) substrates with the stacking sequence of [100-nm GaAs/50-nm Fe3Ga2− x As x /100-nm GaAs] exhibit the distinct photo-enhanced magnetization at room temperature. Transmission electron microscopy reveals the formation of metamagnetic Fe3Ga4 grains on the sample surface. Illumination power dependence of the enhanced magnetization has been carefully compared with the antiferromagnetic-type magnetization–temperature (M–T) curve (Neel temperature of T N = 340–390 K), from which we have discussed the existence of photon-mode photo-enhanced magnetization of some sort in addition with the enhancement due to the light-induced heating.  相似文献   

13.
Joining of composite, Al2O3-TiC, with heat-resistant 9Cr1MoV steel, was carried out by diffusion brazing technology, using a combination of Ti, Cu and Ti as multi-interlayer. The interfacial strength was measured by shear testing and the result was explained by the fracture morphology. Microstructural characterization of the Al2O3-TiC/9Cr1MoV joint was investigated by X-ray diffraction (XRD) and scanning electron microscope (SEM) with energy-dispersion spectroscopy (EDS). The results indicate that a Al2O3-TiC/9Cr1MoV joint with a shear strength of 122 MPa can be obtained by controlling heating temperature at 1130°C for 60 min with a pressure of 12 MPa. Multi-interlayer Ti/Cu/Ti was fused fully and diffusion occurred to produce interfacial layer between Al2O3-TiC and 9Cr1MoV steel. The total thickness of the interfacial layer is about 100 μm and Ti3AlC2, TiC, Cu and Fe2Ti are found to occur in the interface layer.  相似文献   

14.
It has been well established that thermodynamic and transport properties of fluids exhibit singular behavior near the critical point. In this article, the theoretical predictions for the enhancement of the viscosity near the critical point are reviewed. It is then shown how these predictions can be used to obtain a representative equation for the viscosity of H2O in the critical region. Contribution of the National Institute of Standards and Technology, not subject to U.S. copyright.  相似文献   

15.
The spectral parameters of Er3+ in Yb3+/Er3+:KY(WO4)2 crystal with space group C2/c have been investigated based on Judd-Ofelt theory. The spectral parameters were obtained: the intensity parameters are: 2 = 6.33 × 10–20 cm2, 4 = 1.35 × 10–20 cm2, 6 = 1.90 × 10–20 cm2. The radiative lifetime and the fluorescence branch ratios were calculated. The emission cross section e (at 1536 nm) is 2.0 × 10–21 cm2.  相似文献   

16.
An efficient,controllable,and facile two-step synthetic strategy to prepare graphene-based nanocomposites is proposed.A series of Fe3O4-decorated reduced graphene oxide (Fe3O4@RGO) nanocomposites incorporating Fe3O4 nanocrystals of various sizes were prepared by an ethanothermal method using graphene oxide (GO) and monodisperse Fe3O4 nanocrystals with diameters ranging from 4 to 10 nm.The morphologies and microstructures of the as-prepared composites were characterized by X-ray diffraction,Raman spectroscopy,nitrogen adsorption measurements,and transmission electron microscopy.The results show that GO can be reduced to graphene during the ethanothermal process,and that the Fe3O4 nanocrystals are well dispersed on the graphene sheets generated in the process.The analysis of the electrochemical properties of the Fe3O4@RGO materials shows that nanocomposites prepared with Fe3O4 nanocrystals of different sizes exhibit different electrochemical performances.Among all samples,Fe3O4@RGO prepared with Fe3O4 nanocrystals of 6 nm diameter possessed the highest specific capacitance of 481 F/g at 1 A/g,highlighting the excellent capability of this material.This work illustrates a promising route to develop graphene-based nanocomposite materials with a wide range of potential applications.  相似文献   

17.
A complex perovskite oxide, YbBa2NbO6, as a non-reacting substrate for YBa2Cu3O7-° super-conducting film has been developed. The dielectric constant and loss factor values of the material are in the range suitable for its use as substrate for microwave applications. A YBa2Cu3O7−δ superconducting thick film dip coated on YbBa2NbO6 substrate gave a Tc (0) of 92 K and current density of ∼ 1.3 × 104 A cm−2.  相似文献   

18.
In recent years, the fluorite-structured solid solutions with the general formula, (MF2)1-x(RF3)x (M = Ca, Sr, Ba, Pb and R is a rare-earth element or Y), have been the subject of numerous experimental studies focussed on their superionic properties. The overall cubic crystal symmetry (space group Fm3m) is conserved up to x ≶ xmax, where xmax ⊁ 0.4-0.5 depending on M and R. The zone centre phonons and phonon dispersion along three symmetry directions of the mixed superionic compound (BaF2)1-x(LaF3)x have been investigated by applying de Launey angular force model for x ≶ xmax. The calculated results are compared and explained with available experimental results.  相似文献   

19.
Microwave surface impedance, Z s(T), of epitaxial YBCO thin films deposited on CeO2-buffered sapphire substrates, was measured at several discrete frequencies within the range 5–134 GHz by use of coplanar resonator and end-plate cavity resonator techniques. The main features of obtained experimental results are as follows: (i) surface resistance R s(T) at low temperatures obeys the exponential law: R s(T) = R res+R 0⋅exp [−δ/T] with a small gap δ value (δ≈ 0.7 T c); (ii) the most perfect quasi-single-crystalline films reveal a distinct two-peak structure of R s(T) dependence, which is not observable in films with a less ordered crystal structure. These features are believed to reveal some intrinsic electron properties of such films, namely: (i) mixed (d+is) type symmetry of electron pairing, and (ii) dominant role of extended c-oriented defects (e.g., edge dislocation arrays or twin planes) in quasiparticles scattering for the most perfect films, which demonstrate the two-peak anomalous R s(T) behavior.  相似文献   

20.
We have calculated the crystalline electric field (CEF) splitting of the energy levels of Yb3+ (4f13) in the clean Yb-based heavy fermion compound YbRh2Si2. The data of inelastic neutron scattering and electron spin resonance measurements in YbRh2Si2, together with relevant structural, thermodynamic, and magnetic properties, were used as input in the calculations of the possible CEF level scheme in this non-Fermi-liquid compound. Two possible sets of the CEF parameters with the Γ6 or Γ7 ground-state symmetry are discussed. PACS: 71.27.+a; 75.20.Hr; 76.30.−v.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号