首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
A study has been made of the role of ductile-phase toughening on the ambient temperature fracture toughness and fatigue-crack propagation behavior of a molybdenum disilicide intermetallicmatrix composite reinforced with 20 vol pct niobium spheres. Using disk-shaped compact DC(T) samples, only moderate improvements (∼24 pct) in fracture toughnessK lcvalues were found for the composite compared to the unreinforced MoSi2 matrix material. Moreover, (cyclic) fatigue- crack propagation was seen at stress intensities as low as 75 to 90 pct ofK Ic, with growth rates displaying a high dependency (∼14) on the applied stress-intensity range. The lack of significant toughening due to the incorporation of ductile Nb particles is associated with an absence of crack/particle interactions. This is attributed to the formation of a weak reaction-layer interface and elastic mismatch stresses at the crack tip between the Nb and MoSi2, both factors which favor interfacial debonding; moreover, the spherical morphology of Nb phase stabilizes cracking around the particle. Results suggest that increasing the aspect ratio of the distributed Nb rein- forcement phase with attendant interfacial debonding and eliminating possible Nb-phase em- brittlement due to interstitial impurity contamination are critical factors for the successful development of tougher Nb/MoSi2 structural composites. Formerly with McDonnell Formerly with McDonnell  相似文献   

2.
The fracture resistance of a binary TiAl alloy   总被引:6,自引:0,他引:6  
The fracture resistance of a binary Ti-47Al (in at. pct) alloy has been investigated. The binary alloy was cast, forged, and heat treated to a fully lamellar microstructure with a colony size of either 640 or 1425 μm. Fracture toughness tests were performed in a scanning electron microscope (SEM) equipped with a loading stage. Direct observations of the fracture process indicated that crack extension commenced at a stress intensity level of 1.2 to 4 MPa√m. The crack path was primarily interlamellar and crack extension across an individual colony or across similarly oriented colonies was relatively easy. In contrast, crack arrest was prevalent when the crack encountered the boundaries of unfavorably oriented colonies. To extend into an unfavorably oriented neighboring colony, the K level of the approaching crack had to be increased significantly to renucleate a microcrack at a location away from the crack tip, resulting in the formation of an interconnecting ligament that must be fractured to further crack growth. This interaction between the crack and the microstructure led to a large variation in the slope of the K R curves. Comparison of the K R curves for the binary Ti-47Al alloy against published data for quinary Ti-47Al-xNb-yCr-zV alloys indicates that the initiation toughness of the quinary alloys is higher by a factor of 5 to 10, implying the existence of a significant beneficial effect of alloying additions on the initiation toughness.  相似文献   

3.
Anin situ study has been performed in the scanning electron microscope (SEM) on a niobium ductilephase-toughened niobium aluminide (Nb/Nb3Al) intermetallic composite to examine the crack-growth resistance-curve (R-curve) behavior over very small initial crack extensions, in particular over the first ~500 μm of quasi-static crack growth, from a fatigue precrack. The rationale behind this work was to evaluate the role of toughening mechanisms, specifically from crack bridging, in the immediate vicinity of the crack tip and to define the size and nature of bridging zones. Although conventional test methods, where crack advance is monitored typically over dimensions of millimeters using compliance or similar techniques, do not show rising R-curve behavior in this material,in situ microscopic observations reveal that bridging zones resulting from both uncracked Nb3Al ligaments and intact Nb particles do exist, but primarily within ~300 to 400 μm of the crack tip. Accordingly, rising R-curve behavior in the form of an increase in fracture resistance with crack growth is observed for crack extensions of this magnitude; there is very little increase in toughness for crack extensions beyond these dimensions. Ductile-phase toughening induced by the addition of Nb particles, which enhances the toughness of Nb3Al from ~1 to 6 MPa√m, can thus be attributed to crack-tip shielding from nonplanar matrix and coplanar particle bridging effects over dimensions of a few hundred microns in the crack wake. formerly Research Student, Department of Materials Science and Mineral Engineering, University of California-Berkeley  相似文献   

4.
A fracture mechanics approach to hydrogen-assisted microdamage in eutectoid steel is presented. Fractographic analysis revealed micromechanical effects of hydrogen in the form of tearing topography surface (TTS). The progress of this microdamage is modeled as a macroscopic crack that extends the original fatigue precrack and involves linear elastic fracture mechanics principles. In this case, the change from hydrogen-assisted microdamage (TTS) to cleavagelike topography takes place when a critical stress intensity factor (K H) is reached, and this value depends on the amount of hydrogen which penetrated the vicinity of the actual crack tip (the fatigue precrack plus the TTS area). It is shown that the value K H depends on experimental variables—mainly on the fatigue precracking regime—and its value may be associated with a characteristic level of stress intensity factor in the crack growth kinetics curve.  相似文献   

5.
Layered composites develop thermal residual stresses during cooling from processing temperature to room temperature. The thermal stresses reduce fracture toughness data measured in four-point bending tests. To obtain a material parameter characterizing the interface fracture toughness the measured data must be corrected for the influence of thermal stresses. Thermal stresses often lead to kinking of an interface crack out of its initial plane. This tendency can be quantified by two parameters: (i) the ratio G/G0 of the energy release rate of the kinked crack G and the energy release rate of the interface crack GO and (ii) the ratio of the local stress intensity factors at the tip of the interface crack, KII/KI. Both quantities have been computed for a variety of material combinations using the finite element method. They are found to be strongly affected by thermal and elastic mismatch. Fracture experiments have been performed using brittle glass/glass composites with different thermal mismatched. The obtained fracture toughness values and crack deflection angles have evaluated on the basis of the numerical results. Measured and calculated kinking angles are in excellent agreement. The contribution of residual thermal stresses to the interface fracture toughness Kc has been elaborated.  相似文献   

6.
The toughness behavior of high hardness laminar composite steel (high carbon, ∼Rc 60, hard layer metallurgically bonded to a medium carbon ∼Rc 50, softer layer) was investigated. The effort focused on the effect of test temperature, specimen orientation and crack location on toughness. Charpy V-notch specimens with the notch extending through both the hard and soft layers were tested over a series of temperatures to provide transition curves for both the longitudinal and transverse direction. These transition curves are compared to those obtained from specimens that were surface notched on either the hard or soft side. By precracking similarly oriented specimens, information on the fracture toughness (K Q andW/A) was obtained over approximately the same temperature range. These data show the effect of the interface between the hard and soft layer on the various toughness parameters. Lastly, stress corrosion cracking was investigated and KISCC values provided.  相似文献   

7.
Internal hydrogen embrittlement of ultrahigh-strength AERMET 100 steel   总被引:1,自引:0,他引:1  
Near-peak-aged AERMET 100 is susceptible to severe internal hydrogen embrittlement (IHE) at 23 °C, if a sufficient diffusible hydrogen content is present, compromising the high toughness of this ultrahigh-strength steel (UHSS). Evidence includes the threshold stress intensity for subcritical IHE (K TH ) as low as 10 pct of the plane-strain fracture toughness (K IC ) and a fracture-mode transition from microvoid coalescence to brittle transgranular (TG) cracking, apparently along martensite lath interfaces and cleavage planes. The K TH value decreases from a K IC value of 132 to 143 MPa√m to 12 MPa√m, and the amount of brittle TG fracture increases to nearly 100 pct as the concentration of diffusible H increases from essentially 0 to 8 wppm, with severe embrittlement in the 0 to 2 wppm H regime. The IHE is time dependent, as evidenced by increasing K TH values with increasing dK/dt and K-independent subcritical crack growth rates, and is attributed to diffusional H repartition from reversible trap sites to the stressed crack tip. The partition distance is ∼1 μm, consistent with the fine-scale microstructure of AERMET 100. The causes of the susceptibility of AERMET 100 to TG IHE are very high crack-tip stresses and a reservoir of mobile H trapped reversibly at (Fe,Cr,Mo)2C precipitates. These factors enable repartition of H to misoriented martensite lath interfaces and interstitial sites near cleavage planes, with each prone to decohesion along a connected path. Predissolved H also reduces the ductile fracture toughness of AERMET 100 at high loading rates, perhaps due to reduced void growth caused by H trapped strongly at undissolved metal carbides.  相似文献   

8.
The toughness behavior of high hardness laminar composite steel (high carbon, ∼ Rc 60, hard layer metallurgically bonded to a medium carbon ∼Rc 50, softer layer) was investigated. The effort focused on the effect of test temperature, specimen orientation and crack location on toughness. Charpy V-notch specimens with the notch extending through both the hard and soft layers were tested over a series of temperatures to provide transition curves for both the longitudinal and transverse direction. These transition curves are compared to those obtained from specimens that were surface notched on either the hard or soft side. By precracking similarly oriented specimens, information on the fracture toughness (K Q andW/A) was obtained over approximately the same temperature range. These data show the effect of the interface between the hard and soft layer on the various toughness parameters. Lastly, stress corrosion cracking was investigated andK ISCC values provided.  相似文献   

9.
This paper presents a study of dynamic fracture initiation behavior of 2124-T6 aluminum matrix composites containing 0, 5.2, and 13.2 vol pct SiC whiskers. In the experiment, an explosive charge is detonated to produce a tensile stress wave to initiate the fracture in a modified Kolsky bar (split Hopkinson bar). This stress wave loading provided a stress intensity rate, KI,, of about 2 × 106 MPa√m/s. The recorded data are then analyzed to calculate the critical dynamic stress intensity factor,K Id, of the composite, and the values obtained are compared with the corresponding quasi-static values. The test temperatures in this experiment ranged from −196 °C to 100°C, within which range the fracture initiation mode was found to be mostly ductile in nature. The micromechanical processes involved in void and microcrack formation were investigated using metallographic techniques. As a general trend, experimental results show a lower toughness as the volume fraction of the SiC whisker reinforcement increases. The results also show a higher toughness under dynamic than under static loading. These results are interpreted using a simple dynamic fracture initiation model based on the basic assumption that crack extension initiates at a certain critical strain developed over some microstructurally significant distance. This model enables us to correlate tensile properties and microstructural parameters, as, for instance, the interspacing of the SiC whiskers with the plane strain fracture toughness.  相似文献   

10.
Analysis of the tensile and fracture behavior of a composite system consisting of boron carbide particulate-reinforced NiAl with continuous 304 stainless steel toughening regions was performed. The composite was fabricated by extrusion, with the toughening regions extending along the length of the plate in the extrusion direction. Mechanical properties were determined as a function of orientation. Tensile testing revealed that the composite modulus varied only slightly as a function of testing direction, the strength was approximately 25 pct greater in the longitudinal relative to the transverse orientation, and the transverse failure strain was only 0.3 pct compared to values in excess of 10 pct for longitudinal testing. Notched Charpy impact testing indicated that the energy absorption values varied significantly as a function of specimen location and crack growth direction, ranging from 2 to 40 Joules. In addition,K IC values measured on subsize compact tension samples were found to range from 17 to 27 MPa ⋅ m1/2. It was also established that theK max values determined from the maximum load measured during compact tension testing were similar to theK Q values calculated from instrumented notched Charpy impact testing. Finally, the fatigue crack growth characteristics of the composite were determined as a function of orientation.  相似文献   

11.
Hydrogen-induced fracture of ductile Fe3Al-based intermetallics was studied through mechanical testing, fracture surface observation, andin situ transmission electron microscopy (TEM) tests of tensile specimens. Mechanical properties of ordinary ductile X-80 pipeline steel (low-alloy steel) were tested and compared with Fe3Al intermetallics. Elongations of the Fe3Al alloy decreased from 14 to 10 pct, with increases in the strain rate from 10−6 to 10−3/s. The elongation reduction of Fe3Al was caused by the hydrogen-induced fracture. There was no elongation reduction when the testing was done in mineral oil. Non-necking occurred near the fracture section, and the fracture surfaces mainly consist of cleavage and partial intergranular morphologies. Elongation near the fracture surface of the Fe3Al intermetallics was about 14 pct, which is the same as the total elongation. For the pipeline steel, however, an elongation near the fracture cross section was greater than 130 pct, which was much higher than its total elongation of 17 pct.In situ TEM observation on a tensile test sample showed crack propagation accompanied by dislocation plasticity. When the Fe3Al was precharged cathodically, the crack tip was sharp. Its radius was much less than that obtained without hydrogen charging. The crack propagated along the grain boundary for the charged specimens, but penetrated the grain boundary for the specimen without hydrogen charging. Effects of hydrogen on plastic deformation and grain-boundary cracking are discussed in this article.  相似文献   

12.
The corrosion fatigue crack propagation behavior of a squeeze-cast Al-Si-Mg-Cu aluminum alloy (AC8A-T6), which had been precracked in air, was investigated at testing frequencies of 0.1, 1, 5, and 10 Hz under a stress ratio (R) of 0.1. Compact-toughness specimens were precracked about 6 mm in air prior to the corrosion fatigue test in a 3 pct saline solution. At some near-threshold conditions, these cracks propagated faster than would be predicted by the mechanical driving force. This anomalous corrosion fatigue crack growth was affected by the initial stress-intensity-factor range (ΔK i), the precracking conditions, and the testing frequency. The initial crack propagation rate was as much as one order of magnitude higher than the rate for the same conditions in air. This rapid rate was associated with preferential propagation along the interphase interface in the eutectic structure. It is believed that a chemical reaction at the crack tip and/or hydrogen-assisted cracking produced the phenomenon. Eventual retardation and complete arrest of crack growth after this initial rapid growth occurred within a short period at low ΔK values, when the testing frequency was low (0.1 and 1 Hz). This retardation was accompanied by corrosion product-induced crack closure and could be better explained by the contributory stress-intensity-factor range (ΔK cont) than by the effective stress-intensity-factor range (ΔK eff).  相似文献   

13.
The dependence of the dynamic plane-strain fracture toughness,K Id, on temperature and crack velocity was measured for propagating cracks in 1020 steel. The dynamics of crack propagation in double-cantilevered specimens was recorded using electroresistivity techniques. The fracture surface energy was found by comparing the crack propagation to solutions of crack motion in wedged-open cantilevered specimens. TheKId behavior was investigated over a range of temperatures from —196° to —50°C and crack velocities of 3 × 10-3 to 5 × 10-2 of √E/p. The rate and temperature dependence ofK Id over the range ofT and υc investigated is well described by:1/K ld 2= υ0 are experimental constants. A dynamic value ofK Id was 70 pct ofK Ic at the same temperature, although in the temperature and crack velocity range investigated the specific fracture surface energy varies by a factor of 6. The temperatureT T =B/A in(υ oc) for which1/K Id 2 = 0 is similar to Charpy impact transition temperature values whenυ c = 3 × 10-3√.E/p. If the plane-strain stress condition could be maintained, thenT T would define a brittle-ductile transition temperature for dynamic plane-strain fracture toughness. The constantsA andB are interpreted by understanding the plastic energy dissipated by a moving crack. Formerly with Brown University, Providence, R. I.  相似文献   

14.
The initiation of microcracks at MnS inclusions during fracture toughness tests of ASTM A533B steel compact tension specimen was detected by an 8-channel acoustic emission recording system. The microcracks were located as far as 7 mm ahead of the precrack front with a large spread of 5 mm above and below the plane of the main crack. Most of the microcracks were found to form before they were engulfed by the plastic zone which was determined by a finite element analysis. Assuming that the material is homogeneous and elastic outside the plastic zone, we estimated that microcracks were formed when the normal tensile stress σz at each inclusion is in the range of 400 to 800 MPa. The estimated stress value exceeds the uniaxial yield strength, σys = 477 MPa of the material because σz near the crack tip could be as large as ys due to the stress triaxiality under plane strain conditions. Formerly Visiting Scientist in the Department of Theoretical and Applied Mechanics, Cornell University (on leave from Institute of Industrial Science, University of Tokyo, Tokyo, Japan).  相似文献   

15.
Directionally solidified (DS) β + (γ + γ′) Ni-Fe-Al alloys have been used to investigate the effect of a ductile second phase on the room-temperature mechanical behavior of a brittle 〈001〉-oriented β (B2) phase. The ductile phase in the composite consisted of a fine distribution of ordered γ′ precipitates in a γ (fcc) matrix. Three microstructures were studied: 100 pct lamellar/rod, lamellar + proeutectic β, and discontinuous γ. The β matrix in the latter two microstructures contained fine-scale bcc precipitates formed due to spinodal decomposition. Room-temperature tensile ductilities as high as 12 pct and fracture toughness (K Q ) of 30.4 MPa √m were observed in the 100 pct lamellar/rod microstructure. Observations of slip traces and dislocation substructures indicated that a substantial portion of the ductility was a result of slip transfer from the ductile phase to the brittle matrix. This slip transfer was facilitated by the Kurdjumov-Sachs (KS) orientation relationship between the two phases and the strong interphase interface which showed no decohesion during deformation. In microstructures which show higher values of tensile ductility and fracture toughness, 〈100〉 slip was seen in the β phase, whereas 〈111〉 slip was seen in the β phase in the microstructure which showed limited ductility. The high ductility and toughness are explained in terms of increased mobile dislocation density afforded by interface constraint. The effect of extrinsic toughening mechanisms on enhancing the ductility or toughness is secondary to that of slip transfer.  相似文献   

16.
17.
Nickel-base wear materials are typically used as weld hardfacing deposits, or as cast or hot isostatically pressed (HIP) inserts that provide the needed wear resistance to a base material with the desired mechanical properties. Most nickel-base wear materials contain high levels of chromium, silicon, carbon, and boron, which results in complex microstructures that are comprised of high volume fractions of silicide, carbide, and/or boride phases. The volume fraction of nickel-phase dendrite regions typically ranges from 40 to 70 pct, and these dendrite-phase particles are individually isolated by a matrix of silicide, carbide, and boride phases. The continuous matrix of brittle silicide, carbide, and boride phases results in a low damage tolerance for nickel-base wear materials, which is a concern in applications that involve high stresses, thermal transients, or shock loading. Fatigue crack growth (FCG) and fracture toughness (K IC) testing in accordance with ASTM E399 methods has been used to quantify the damage tolerance of various nickel-base wear materials. Fractographic and microstructure examinations were used to define a generic toughening mechanism for nickel-base wear materials. The toughness of nickel-base wear materials is primarily controlled by the plastic deformation of the nickel-phase dendrites in the wake of a crack moving through the matrix of brittle silicide, carbide, and/or boride phases, i.e., crack bridging. Measured K IC values are compared with calculated K IC values based on the crack-bridging model. Microstructure examinations are used to define and confirm the important aspects of the crack-bridging model. This model can be used to predict the toughness values of nickel-base wear materials and direct processing methods to improve the K IC values.  相似文献   

18.
Fatigue crack propagation (FCP) has been studied in a new class of materials termed metal-intermetallic laminate (MIL) composites (Ti-Al3Ti). Due to ease of fabrication and control over layer makeup, these MIL composites can be tailored to optimize the constituent properties for structural and higher performance aerospace applications. Effects of ductile reinforcement (titanium alloy) type, thickness, and volume fraction were systematically investigated in both arrester and divider orientations. Stress intensity (K max) values as large as 40 MPa√m were observed in the higher crack growth regime, indicating that the fracture toughness of the MIL composites is comparable to common structural metals. In both divider and arrester orientations, the overall fatigue crack growth rate showed an improvement with increasing Ti volume fraction and with increasing Ti thickness (at constant ductile-phase volume fraction). It is noted that the fatigue resistance of monolithic Al3Ti was improved by an order of magnitude by incorporating just 20 vol pct ductile Ti. In the divider orientation, toughening is obtained through plastically stretching the intact ductile Ti ligaments that bridge the crack wake, thus reducing the crack driving force. By virtue of its morphology, the arrester orientation provides toughening by trapping the crack front entirely at the metallic-intermetallic interfaces, thus requiring the crack to renucleate at each interface. Results are compared with specific crack growth rates of conventional monolithic alloys and other composite systems such as TiNb/γ-TiAl and Nb/Nb3Al. Owing to their low density (∼3.8 g/cc), Ti-Al MIL composites exhibited specific crack growth rates (da/dN vs ΔK/ρ) on par with tougher, but relatively denser, ductile metals such as Ti alloys and high-strength steels.  相似文献   

19.
Tensile prestrains of various levels were applied to blank steel specimens. Four-point bend tests of notched specimens at various temperatures revealed an appreciable drop in the notch toughness of the specimens, which experienced 3 pct tensile prestrain. Further prestrains of up to 20 pct had a negligible effect on the notch toughness despite additional increases in the yield strength. Microscopic analyses combined with finite element method (FEM) calculations revealed that the decrease in toughness resulted from a change of the critical event controlling the cleavage fracture. The increase in yield strength provided by prestraining allowed the normal tensile stress at the notch tip to exceed the local fracture stress σ f for propagating a just-nucleated microcrack. As a result, for the coarsegrained steel with low σ f tested presently, the critical event was changed from tensile stress-controlled propagation of a nucleated microcrack to plastic strain-controlled nucleation of the microcrack at the notch tip. A reduction of toughness was induced as a result of this. The increase in yield strength provided by decreasing the test temperature acted in the same way.  相似文献   

20.
Interactions between hydrogen embrittlement and temper embrittlement have been examined in a study of fracture and low growth rate (near-threshold) fatigue crack propagation in 300-M high strength steel, tested in humid air. The steel was investigated in an unembrittled condition (oil quenched after tempering at 650°C) and temper embrittled condition (step-cooled after tempering at 650°C). Step-cooling resulted in a severe loss of toughness (approximately 50 pct reduction), without loss in strength, concurrent with a change in fracture mode from micr ovoid coalescence to inter granular. Using Auger spectroscopy analysis, the embrittlement was attributed to the cosegregation of alloying elements (Ni and Mn) and impurity elements (P and Si) to prior austenite grain boundaries. Prior temper embrittlement gave rise to a substantial reduction in resistance to fatigue crack propagation, particularly at lower stress intensities approaching the threshold for crack growth(x0394;K o). At intermediate growth rates (10-5 to 10-3 mmJcycle), propagation rates in both unembrittled and embrittled material were largely similar, and only weakly dependent on the load ratio, consistent with the striation mechanism of growth observed. At near-threshold growth rates (<10−5 to 10−6 mmJcycle), embrittled material exhibited significantly higher growth rates, 30 pct reduction in threshold ΔKo values and intergranular facets on fatigue fracture surfaces. Near-threshold propagation rates (and ΔKo values) were also found to be strongly dependent on the load ratio. The results are discussed in terms of the combined influence of segregated impurity atoms (temper embrittlement) and hydrogen atoms, evolved from crack tip surface reactions with water vapor in the moist air environment (hydrogen embrittlement). The significance of crack closure concepts on this model is briefly described. ntmis]formerly with the Lawrence Berkeley Laboratory, University of California in Berkeley. Formerly with the Lawrence Berkeley Laboratery, University of California in Berkeley.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号