首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Performance of a direct methanol fuel cell   总被引:12,自引:0,他引:12  
The performance of a direct methanol fuel cell based on a Nafion® solid polymer electrolyte membrane (SPE) is reported. The fuel cell utilizes a vaporized aqueous methanol fuel at a porous Pt–Ru–carbon catalyst anode. The effect of oxygen pressure, methanol/water vapour temperature and methanol concentration on the cell voltage and power output is described. A problem with the operation of the fuel cell with Nafion® proton conducting membranes is that of methanol crossover from the anode to the cathode through the polymer membrane. This causes a mixed potential at the cathode, can result in cathode flooding and represents a loss in fuel efficiency. To evaluate cell performance mathematical models are developed to predict the cell voltage, current density response of the fuel cell.  相似文献   

2.
赵煜  薄晓  马彦  王俊文  王彦平  李婷  刘平  常瑜 《化工进展》2014,33(3):629-633,650
实验采用双室型微生物燃料电池(MFC),以生活废水中厌氧菌作为生物催化剂,葡萄糖为燃料,通过5个不同温度条件下的间歇运行,应用循环伏安、交流阻抗、极化测试等电化学方法考察温度对电池产电性能的影响。结果表明,一定温度范围内,提高温度有助于增强微生物的电化学活性,降低传荷阻抗,提高电池输出功率密度和交换电流密度。32 ℃时,电池产电效能最佳,电池功率密度和交换电流密度分别达到156.2 mW/m2和8.02×10?5 mA/m2,温度太低或太高均不利于细菌的电化学活性。体系温度为18 ℃、25 ℃、32 ℃、39 ℃、46 ℃时,传荷阻抗Rct在阳极内阻中占的比例分别为97.99%、84.02%、47.36%、91.30%、99.61%,说明传荷阻抗在阳极内阻中占绝对份额,MFC是传荷过程控制下的电化学反应体系。  相似文献   

3.
The cell performance of direct methanol fuel cells (DMFC) is 0.5 V at 0.5 A cm–2 under high pressure oxygen operation (3 bar abs.) at 110 °C. However, high oxygen pressure operation at high temperatures is only useful in special market niches. Therefore, our work has now focused on air operation of a DMFC under low pressure (up to 1.5 bar abs.). At present, a power density of more than 100 mW cm–2 can be achieved at 0.5 V on air operation at 110 °C. These measurements were carried out in single cells with an electrode area of 3 cm2 and the air stoichiometry only amounted to 10. The effects of methanol concentration and temperature on the anode performance were studied by pseudo half cell measurements and the results are presented together with their impact on the cell voltage. A cell design with an electrode area of 550 cm2, which is appropriate for assembling a DMFC stack, was tested. A three-celled stack based on this design revealed nearly the same power densities as in the small experimental cells at low air excess pressure and the voltage–current curves for the three cells were almost identical. At 110 °C a power output of 165 W at a stack voltage of 1.5 V can be obtained in the air mode.  相似文献   

4.
A computational simulation was conducted by using a one-dimensional isothermal model for an alkaline fuel cell (AFC) single cell to investigate influences of the thicknesses of the separator, catalyst layer, and gas-diffusion layer in an AFC. The cell polarizations were predicted at various thicknesses and their influences were also analysed. Thickening the separator layer decreased the limiting current density and increased the slope of the ohmic polarization region. Investigation on the thickness of the anode catalyst layer showed that the optimum thickness varied between 0.04–0.15 mm according to the cell voltage. The thickness of the cathode catalyst layer significantly influenced the cell performance. Also, a limitation of thickness effect in the cathode catalyst layer was observed. This limitation was considered to be caused by the mass transfer resistance of the electrolyte.  相似文献   

5.
以大面积电池和千瓦级电堆为对象,研究了温度、燃料成分、流量等对阳极支撑型电堆性能的影响。结果表明:温度的影响最大,复数阻抗谱中高频弧对应的活化能最高;欧姆阻抗的活化能较低,表明其不全是离子电导的电阻,还包括双极板的表面电阻和可能的接触电阻。利用干氢气燃料测试时,在开路电压附近表现出较大的活化极化,且其活化能很小,表明该活化极化的速率控制步骤并非是电荷转移过程,而是对应某种表面扩散过程。模拟重整气燃料测试过程中活化极化不明显,但开路电压较低,性能比氢气燃料差。随着电堆工作电流的增加,燃料尾气的温度增加,表现出明显的热效应。  相似文献   

6.
通过向阳极添加造孔剂(PMMA)改善阳极的微观结构,研究不同含量的造孔剂(PMMA)对阳极的显微结构、电性能的影响。利用SEM、电化学1二作站等测试手段对单电池的结构和电性能进行了表征。研究结果表明,添加7wt.%的PMMA造孔剂制备的单电池,阳极的孔隙率高,阳极中的气孔分布均匀,结构规整,降低了燃料气的传输阻力,提高了三相反应界面,获得了良好的电性能。以H2+3%H:0为燃料气,在750℃下单电池的开路电压(OCV)为1.08V、最大功率密度为0.82W/cm2、欧姆阻抗为0.20Ω·cm2、两极阻抗为0.53Ω·cm2。  相似文献   

7.
固体氧化物燃料电池(SOFC)趋向于直接使用甲烷天然气为燃料,确定甲烷在固体氧化物燃料电池阳极发生的化学与电化学反应非常重要.以Ni/YSZ为阳极、YSZ板做电解质、LSM为阴极,用涂浆法制作电解质支撑的电池,研究低浓度干甲烷在固体氧化物燃料电池中的反应.改变甲烷浓度、电池工作温度、电解质厚度,用在线色谱测量不同电流密度下,阳极出口气体产生速率.根据阳极出口气体产生速率变化,分析干甲烷在阳极的反应变化.通过氧消耗计算和转移电子数的分析,说明甲烷在电池阳极发生不同类型的反应.电流密度小时,甲烷发生部分氧化反应.电流密度大时,发生氢氧化和CO氧化,部分甲烷发生总反应为完全氧化的反应.部分甲烷发生完全氧化反应的同时,部分甲烷仍发生部分氧化反应,但其反应速率随电流密度增加逐渐降低.甲烷浓度和试验温度增加,甲烷开始发生完全氧化的电流密度增加.  相似文献   

8.
Membrane electrodes prepared by chemical deposition of platinum directly onto the anion exchange membrane electrolyte were tested in direct methanol alkaline fuel cells. Data on the cell voltage against current density performance and anode potentials are reported. The relatively low fuel cell performance was probably due to the low active surface area of Pt deposits on the membrane comparing to other membrane electrode assembly (MEA) fabrication methods. However, the catalysed membrane electrode showed good performance for oxygen reduction. A reduction in cell internal resistance was also obtained for the catalysed membrane electrode. By combining the catalysed membrane electrodes with a catalysed mesh, maximum current density of 98 mA cm–2 and peak power density of 18 mW cm–2 were achieved.  相似文献   

9.
Carbon supported iron (III) tetramethoxyphenylporphyrin (FeTMPP) heat treated at 800°C under argon atmosphere was used as catalysts for the electroreduction of oxygen in direct methanol polybenzimidazole (PBI) polymer electrolyte fuel cells that were operated at 150°C. The electrode structure was optimized in terms of the composition of PTFE, polymer electrolyte and carbon-supported FeTMPP catalyst loading. The effect of methanol permeation from anode to cathode on performance of the FeTMPP electrodes was examined using spectroscopic techniques, such as on line mass spectroscopy (MS), on line Fourier transform infrared (FTIR) spectroscopy and conventional polarization curve measurements under fuel cell operating condition. The results show that carbon supported FeTMPP heat treated at 800°C is methanol tolerant and active catalyst for the oxygen reduction in a direct methanol PBI fuel cell. The best cathode performance under optimal condition corresponded to a potent ial reached of 0.6V vs RHE at a current density of 900 mAcm–2.  相似文献   

10.
Numerical simulation was conducted to study the potential and current density distributions at the active electrode surface of a solid oxide fuel cell. The effects of electrode deviation, electrolyte thickness and electrode polarization resistance on the measurement error were investigated. For a coaxial anode/electrolyte/cathode system where the radius of the anode is greater than that of cathode, the cathode overpotential is overestimated while the anode overpotential is underestimated. Although the current interruption method or impedance spectroscopy can be employed to compensate/correct the error for a symmetric electrode configuration, it is not useful when dealing with the asymmetric electrode system. For the purpose of characterizing the respective overpotentials in a fuel cell, the cell configuration has to be carefully designed to minimize the measurement error, in particular the selection of the electrolyte thickness, which may cause significant error. For the anode-support single fuel cell, it is difficult to distinguish the polarization between the anode and cathode with reference to a reference electrode. However, numerical results can offer an approximate idea about the source/cause of the measurement error and provide design criteria for the fuel cell to improve the reliability and accuracy of the measurement technique.  相似文献   

11.
A solid state H2S/air electrochemical cell having the configuration of H2S, (MoS2 NiS Ag)/YSZ/Pt,air has been examined with different H2S flow rates and concentrations at atmospheric pressure and 750-850 ℃.Performance of the fuel cell was dependent on anode compartment H2S flow rate and concentration. The cell open-circuit voltage increased with increasing H2S flow rate. It was found that increasing both H2S flow rate and H2S concentration improved current-voltage and power density performance. This is resulted from improved gas diffusion in anode and increased concentration of anodic electroactive species. Operation at elevated H2S concentration improved the cell performance at a given gas flow rate. However, as low as 5% H2S in gas mixture can also be utilized as fuel feed to cells. Highest current and power densities, 1750mA.cm-2 and 200mW.cm-2,are obtained with pure H2S flow rate of 50ml.min-1 and air flow rate of 100ml.min-1 at 850℃.  相似文献   

12.
A model predicting the temperature field in the porous reforming anode of a solid oxide fuel cell is presented herein. The model is based on mass, momentum, and heat balances of a chemically reacting mixture of gases within the porous matrix of the anode. The important novel characteristic of the model is the consideration of the both internal reforming and electrochemical reactions in the bulk of the porous anode. The electronic and ionic currents in the anodes are calculated utilizing the solution of the Poisson equations for the electric potentials in the porous medium. The transfer current density is described by the Butler–Volmer equation.The model is applied to investigate the temperature field and the reactive flow in button-shaped fuel cells with uniform and graded (multi-layer) anodes composed of Ni and YSZ particles with methane/water vapor mixture used as the fuel. The maximum temperature difference between the hot and cold spots of the anodes is found to reach up to 200 K. The results indicate that the generation of Joule heating caused by the current passing through the anode and the activation losses are the dominating heat sources compared to the gas-water shift and electrochemical reactions.  相似文献   

13.
郭章飞  郑丹  李晨忱  马国仙  董瑾  郭强 《化学世界》2012,53(1):10-13,23
利用微电子机械技术(MEMS)制备了含有4条脊的点蛇混合阳极新结构,组成自呼吸式微型燃料电池,并与老式阳极结构(含2条脊)比较。研究发现,当阳极的集流条由2增加到4时,流道总长度增大约一倍,电池的极限电流密度和峰值功率密度分别提高18.56%和15.26%,在100~500 mA恒电流放电下,可节省燃料平均达6.18%。流场的深度过深和过浅都不利于电池性能的发挥,在175μm深度时电池的效果最佳,氢气的有效利用率最高;氢气的流速对电池的性能影响不大,10~20 mL/min的流量足以保证燃料供给。  相似文献   

14.
This study reports a two-dimensional numerical simulation of a steady, isothermal, fully humidified polymer electrolyte membrane (PEM) fuel cell, with particular attention to phenomena occurring in the catalyst layers. Conservation equations are developed for reactant species, electrons and protons, and the rate of electrochemical reactions is determined from the Butler–Volmer equation. Finite volume method is used along with the alternating direction implicit algorithm and tridiagonal solver. The results show that the cathode catalyst layer exhibits more pronounced changes in potential, reaction rate and current density generation than the anode catalyst layer counterparts, due to the large cathode activation overpotential and the relatively low diffusion coefficient of oxygen. It is shown that the catalyst layers are two-dimensional in nature, particularly in areas of low reactant concentrations. The two-dimensional distribution of the reactant concentration, current density distribution, and overpotential is determined, which suggests that multi-dimensional simulation is necessary to understand the transport and reaction processes occurring in a PEM fuel cell.  相似文献   

15.
穆嫒萍  叶丁丁  陈蓉  朱恂  廖强 《化工学报》2020,71(7):3278-3287
基于棉线的微流体燃料电池采用棉线作为流道,无须外部泵、易于微型化,是便携式微流体设备非常有前景的电源,但其性能受阳极燃料传质的限制。本文采用格子Boltzmann方法研究基于棉线的微流体燃料电池阳极耦合电化学反应的传质特性,通过构建三维的棉线流道数值模型,计算得到该流道内燃料的速度及浓度分布,并讨论燃料的进口浓度及流量对该电池阳极性能及传质特性的影响。计算结果表明:阳极极化曲线与实验结果吻合较好;燃料在棉线内部的流速较低,在不同阳极过电位下,燃料浓度沿流动方向均降低,且过电位越大降低得越多;进口燃料浓度越高时,平均电流密度越高,阳极性能升高;随着进口燃料流量的增加,棉线与反应界面接触部位的浓度与其他区域浓度之间的差异增大,而进口流量较低时,该浓度的差异较小且流道后段的浓度较低。  相似文献   

16.
Electrochemical impedance spectroscopy (EIS) is a very useful method for the characterization of fuel cells. The anode and cathode transfer functions have been determined independently without a reference electrode using symmetric gas supply of hydrogen or oxygen on both electrodes of the fuel cell at open circuit potential (OCP). EIS are given for both polymer electrolyte fuel cells (PEFC) and solid oxide fuel cells (SOFC) at current densities up to 0.76 A cm−2 (PEFC) and 0.22 A cm−2 (SOFC). With increasing current density the PEFC-impedance decreases significantly in the low frequency range reaching a minimum at 0.4 A cm−2. At even higher current densities an increasing contribution of water diffusion is observed: the cell impedance increases again. From EIS of SOFC a finite diffusion behavior is observed even at OCP, depending on water partial pressure of the anodic gas supply. This additional element reflects the influence of water partial pressure on the cell potential. The simulation of the measured EIS with an equivalent circuit enables the calculation of the individual voltage losses in the fuel cell.  相似文献   

17.
We develop a mathematical model of solid polymer electrolyte fuel cell with anode CO kinetics, which is essentially a model that marrying the work of Bernardi and Verbrugge (J. Electrochem. Soc. 139 (1992) 2477) with that of Springer et al. (J. Electrochem. Soc. 148 (2001) A11). Two cases of study were carried out. First, the water self-sufficiency of fuel cell operation was conducted under different current density, temperature, pressure differential across the membrane-electrode-assembly (MEA), hydraulic permeability and electro-kinetic permeability. Comparison of superficial water velocities in the MEA under the effect of different current density with those from Bernardi and Verbrugge was conducted. Results showed that, treating the catalyst layers as interfaces instead of regions as simplified by Bernardi and Verbrugge, would significantly underestimate the water velocities in the MEA and the error is particularly large at high current density operations. Second, the effect of CO poisoning of fuel cell was presented in terms on cell polarization. The prediction covered 0, 25, 50, 100 and 250 ppm of CO concentration in hydrogen feedstock and results were validated by experimental data obtained from Springer et al. The trends of anode polarization curve due to CO poisoning were explained.  相似文献   

18.
C. Xu  Q. Ye 《Electrochimica acta》2006,51(25):5524-5531
We investigated experimentally the effect of the anode backing layers consisting of carbon papers with different thicknesses and different polytetrafluoroethylene (PTFE) contents on the cell performance of a direct methanol fuel cell (DMFC). The membrane electrode assemblies were prepared using the decal method such that the effect of different anode backing layers could be studied with the same anode catalyst layer, the same membrane and the same cathode. We found that a too thin anode backing layer resulted in lower cell voltages in the entire current density region, whereas a too thick backing layer led to a lower limiting current density. The reduced cell performance as a result of thinning the backing layer may be attributed mainly to the increased under-rib mass transport polarization as a result of weaker under-rib convection in a thinner backing layer. The experimental results also showed that the use of a PTFE-treated backing layer resulted in a lower limiting current density, attributing primarily to the increased mass transfer resistance as a result of the PTFE treatment.  相似文献   

19.
采用多层水系流延和共烧方法制备具有阳极功能层的单电池。阳极基底、阳极功能层、电解质层和阴极层分别为Ni-YSZ、Ni-ScSZ、YSZ和LSM-ScSZ。在H2/空气气氛中,分别在700、750、800℃测试具有阳极功能层的单电池,其最大功率密度分别为:0.30、0.55W/cm2和0.8W/cm2;其对应的电池欧姆电阻(R0)分别为0.39、0.30cm2和0.19cm2。电池的极化电阻则分别为1.28、0.91cm2和0.62cm2。采用相同工艺制备无阳极功能层的单电池,其在700、750、800℃的最大功率密度分别为0.21、0.31W/cm2和0.56W/cm2,对应的R0为0.41、0.39cm2和0.28cm2。电池的极化电阻为1.40、1.27cm2和0.91cm2。这说明采用的多层水系流延和共烧法制备的固体氧化物燃料电池的阳极功能层能有效减小电池的活化极化,从而提高单电池的电化学性能。  相似文献   

20.
The effects of mesocarbon microbeads support for platinum–ruthenium (Pt–Ru) catalysts on anode performance of the direct methanol fuel cell (DMFC) were investigated. Polarization characteristics of the anode electrode were low due to the fast rate of mass transport in the electrode. The effects of the Nafion® content in the catalyst, the MEA hot press condition, the cell operation temperature and methanol concentration on the polarization curves of the anode were also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号