共查询到16条相似文献,搜索用时 125 毫秒
1.
2.
采用磁控溅射的方法在Si(111)衬底上溅射沉积Ga2O3/Cr膜,并通过氨化的方法在Si(111)衬底上成功合成了六方纤锌矿GaN纳米结构材料,研究了不同的氨化温度对合成GaN纳米材料的影响.采用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、透射电子显微镜(TEM)、高分辨透射电子显微镜(HR-TEM)、傅里叶红外吸收(FTIR)光谱来检测样品的形态,结构和成分,并且讨论了GaN纳米结构的生长机理.研究结果表明,在Cr催化合成GaN纳米结构的过程中,氨化温度对其有重要影响,最佳温度是950℃. 相似文献
3.
氨化温度对氨化Ga2O3/Al膜制备GaN纳米结构材料的影响 总被引:2,自引:0,他引:2
采用磁控溅射的方法在Si(111)衬底上溅射沉积了Ga2O3/Al膜,并通过氨化的方法在Si(111)衬底上获得了GaN纳米结构材料,研究了不同的氨化温度对生成GaN纳米结构材料的影响.对样品进行了傅立叶红外吸收(FTIR)、X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)以及高分辨电镜(HRTEM)测试,分析了不同温度对GaN样品的结构、组分和形貌等特性的影响.结果表明,用该方法在950℃的氨化温度下得到了大量的六方GaN纳米棒. 相似文献
4.
利用射频磁控溅射法在Si(111)衬底上先溅射ZnO缓冲层,再溅射Ga2O3薄膜,然后在开管炉中分别以850℃,900℃,950℃和1 000℃等温度及常压下通氨气进行氨化,反应生长GaN薄膜.利用该方法制备的GaN薄膜是沿c轴方向择优生长的六角纤锌矿多晶结构,并且随着氨化温度的升高,GaN向棒状和线状形态生长. 相似文献
5.
6.
采用射频磁控溅射技术先在硅衬底上制备Ga2O3/ Nb薄膜,然后在900℃时于流动的氨气中进行氨化制备GaN纳米线.用X射线衍射(XRD)、傅立叶红外吸收光谱(FTIR)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)详细分析了GaN纳米线的结构和形貌.结果表明:采用此方法得到的GaN纳米线为六方纤锌矿结构,其纳米线的直径大约在50~100nm之间,纳米线的长约几个微米.室温下以325nm波长的光激发样品表面,只显示出一个位于364.4nm的很强的紫外发光峰.最后,简单讨论了GaN纳米线的生长机制. 相似文献
7.
8.
为了制备高质量的GaN纳米结构,采用磁控溅射技术先在硅衬底上制备Ga2O3/TiO2薄膜,然后在950℃时于流动的氨气中进行氨化反应,成功制备出GaN纳米线.采用X射线衍射(XRD)、傅里叶红外吸收光谱(FTIR)、扫描电子显微镜(SEM)和高分辨透射电子显微镜(HRTEM)对样品进行分析.研究结果表明,采用此方法得到了六方纤锌矿结构的GaN单晶纳米线,纳米线的直径在100~400nm,纳米线的长度在3~10μm. 相似文献
9.
10.
采用射频磁控溅射工艺在扩镓硅基上溅射Ga2O3薄膜氮化反应组装GaN薄膜,研究硅基扩镓时间对GaN薄膜晶体质量的影响.利用红外透射谱(FHR)、X射线衍射(XRD)、扫描电镜(SEM)、光电能谱(XPS)和荧光光谱(PL)对生成的GaN薄膜进行组分、结构、表面形貌和发光特性分析.测试结果表明:采用此方法得到六方纤锌矿结构的GaN晶体膜.同时显示:在相同的氮化温度和时间下,随着硅基扩镓时间的增加,薄膜的晶体质量和发光特性得到明显提高.但当硅基扩镓时间进一步增加时,薄膜的晶体质量和发光特性却有所降低.较适宜的硅基扩镓时间为40min. 相似文献
11.
采用射频磁控溅射在扩镓硅基上溅射Ga2O3薄膜,然后氮化反应组装GaN晶体膜,并研究氮化时间对薄膜晶体质量的影响。测试结果表明:采用两步法生长得到六方纤锌矿结构的GaN多晶膜,扩镓硅层有效的抑制了硅衬底的氮化和弛豫了GaN与Si衬底的热失配。同时显示:在相同的氮化温度下,晶粒尺寸随氮化时间的增加而增大,薄膜的晶化程度相应的得到提高。 相似文献
12.
利用射频磁控溅射法在Si(111)衬底上先溅射ZnO中间层,接着溅射Ga2O3 薄膜,然后ZnO/Ga2O3薄膜在管式炉中常压下通氨气进行氮化,高温下ZnO层在氨气的气氛中挥发,而Ga2O3薄膜和氨气反应合成出GaN纳米管.X射线衍射(XRD)测量结果表明利用该方法制备的GaN具有沿c轴方向择优生长的六角纤锌矿结构.利用傅里叶红外光谱(FTIR)研究了所制备样品的光学性质.利用透射电子显微镜(TEM)和选区电子衍射(SAED)观测了样品的形貌和晶格结构. 相似文献
13.
《Materials Letters》2006,60(9-10):1229-1232
Radial-aligned GaN nanorods were synthesized by ammoniating Ga2O3 films on Mg layer deposited on Si(111) substrates. The products were characterized by X-Ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transformed infrared spectra (FTIR) and high-resolution transmission electron microscopy (HRTEM). The SEM images indicated that the products consisted of radial-aligned GaN nanorods. The XRD and the selective area electron diffraction (SAED) patterns showed that nanorods were hexagonal GaN single crystals. 相似文献
14.
Synthesis of GaN nanorods by ammoniating Ga2O3 films on In2O3 layer deposited on Si (111) substrates
GaN nanorods were synthesized by ammoniating Ga2O3/In2O3 thin films deposited on Si (111) with magnetron sputtering. X-ray diffraction, Scanning electronic microscope and high-resolution TEM results show that they are GaN single crystals, the sizes of which vary from 2 to 7 μm in length and 200 to 300 nm in diameter. In2O3 middle layer plays an important role in the GaN nanorod growth. 相似文献
15.
《Materials Letters》2007,61(19-20):4103-4106
Needle-shaped GaN nanowires have been synthesized on Si (111) substrate through ammoniating Ga2O3/MgO films under flowing ammonia atmosphere at the temperature of 950 °C. The as-synthesized GaN nanowires were characterized by X-ray diffraction (XRD), Fourier transformed infrared (FTIR) spectroscopy, scanning electron microscope (SEM) and high-resolution transmission electron microscopy (HRTEM). The results demonstrate that these nanowires are hexagonal GaN and possess a smooth surface with an average diameter about 200 nm and a length ranging from 5 μm to 15 μm. In addition, the diameters of these nanowires diminish gradually. The growth mechanism of crystalline GaN nanowires is discussed briefly. 相似文献
16.
Lili Sun Chuanwei Sun Huizhao Zhuang Jinhua Chen Zhaozhu Yang 《Materials Letters》2007,61(30):5220-5222
GaN nanorods have been synthesized by ammoniating Ga2O3 films on a TiO2 middle layer deposited on Si(111) substrates. The products were characterized by X-Ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transformed infrared spectra (FTIR) and high-resolution transmission electron microscopy (HRTEM). The XRD analysis indicates that the crystallization of GaN film fabricated on TiO2 middle layer is rather excellent. The FTIR, SEM and HRTEM demonstrate that these nanorods are hexagonal GaN and possess a rough morphology with a diameter ranging from 200 nm to 500 nm and a length less than 10 μm, the growth mechanism of crystalline GaN nanorods is discussed briefly. 相似文献